Back to Journals » Drug Design, Development and Therapy » Volume 11

Biodegradable rifampicin-releasing coating of surgical meshes for the prevention of bacterial infections

Authors Reinbold J, Hierlemann T, Urich L, Uhde AK, Müller I, Weindl T, Vogel U, Schlensak C, Wendel HP, Krajewski S

Received 31 March 2017

Accepted for publication 4 August 2017

Published 18 September 2017 Volume 2017:11 Pages 2753—2762

DOI https://doi.org/10.2147/DDDT.S138510

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Junhua Mai

Peer reviewer comments 2

Editor who approved publication: Dr Qiongyu Guo

Jochen Reinbold,1 Teresa Hierlemann,1 Lukas Urich,1 Ann-Kristin Uhde,1 Ingrid Müller,2 Tobias Weindl,3 Ulrich Vogel,4 Christian Schlensak,1 Hans Peter Wendel,1 Stefanie Krajewski1

1Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, Tübingen, 2Department of Pharmaceutical Engineering, Albstadt-Sigmaringen University of Applied Science, Albstadt, 3Aimecs® GmbH Medical Solutions, Pfarrkirchen, 4Institute of Pathology and Neuropathology, Tübingen, Germany

Abstract: Polypropylene mesh implants are routinely used to repair abdominal wall defects or incisional hernia. However, complications associated with mesh implantation, such as mesh-related infections, can cause serious problems and may require complete surgical removal. Hence, the aim of the present study was the development of a safe and efficient coating to reduce postoperative mesh infections. Biodegradable poly(lactide-co-glycolide acid) microspheres loaded with rifampicin as an antibacterial agent were prepared through single emulsion evaporation method. The particle size distribution (67.93±3.39 µm for rifampicin-loaded microspheres and 64.43±3.61 µm for unloaded microspheres) was measured by laser diffraction. Furthermore, the encapsulation efficiency of rifampicin (61.5%±2.58%) was detected via ultraviolet–visible (UV/Vis) spectroscopy. The drug release of rifampicin-loaded microspheres was detected by UV/Vis spectroscopy over a period of 60 days. After 60 days, 92.40%±3.54% of the encapsulated rifampicin has been continuously released. The viability of BJ fibroblasts after incubation with unloaded and rifampicin-loaded microspheres was investigated using an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, which showed no adverse effects on the cells. Furthermore, the antibacterial impact of rifampicin-loaded microspheres and mesh implants, coated with the antibacterial microspheres, was investigated using an agar diffusion model with Staphylococcus aureus. The coated mesh implants were also tested in an in vivo mouse model of staphylococcal infection and resulted in a 100% protection against mesh implant infections or biofilm formation shown by macroscopic imaging, scanning electron microscopy, and histological examinations. This effective antibacterial mesh coating combining the benefit of a controlled drug delivery system and a potent antibacterial agent possesses the ability to significantly reduce postoperative implant infections.

Keywords:
postoperative infections, drug delivery system, antibacterial implant coating, Staphylococcus aureus, antibiotic

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other article by this author:

Development and in vitro characterization of poly(lactide-co-glycolide) microspheres loaded with an antibacterial natural drug for the treatment of long-term bacterial infections

Reinbold J, Hierlemann T, Hinkel H, Müller I, Maier ME, Weindl T, Schlensak C, Wendel HP, Krajewski S,

Drug Design, Development and Therapy 2016, 10:2823-2832

Published Date: 7 September 2016