Back to Journals » International Journal of Nanomedicine » Volume 9 » Issue 1

Biodegradable drug-eluting nanofiber-enveloped implants for sustained release of high bactericidal concentrations of vancomycin and ceftazidime: in vitro and in vivo studies

Authors Hsu YH, Chen DW, Tai C, Chou Y, Liu S, Ueng SW, Chan E

Received 19 April 2014

Accepted for publication 20 June 2014

Published 12 September 2014 Volume 2014:9(1) Pages 4347—4355


Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Yung-Heng Hsu,1,2 Dave Wei-Chih Chen,1 Chun-Der Tai,3 Ying-Chao Chou,1,2 Shih-Jung Liu,2 Steve Wen-Neng Ueng,1 Err-Cheng Chan4

1Department of Orthopedic Surgery, Chang Gung Memorial Hospital, Guishan Township, 2Department of Mechanical Engineering, Chang Gung University, Guishan Township, 3Graduate Institute of Medical Mechatronics, Chang Gung University, Guishan Township, 4School of Medical Technology, Chang Gung University, Guishan Township, Taiwan

Abstract: We developed biodegradable drug-eluting nanofiber-enveloped implants that provided sustained release of vancomycin and ceftazidime. To prepare the biodegradable nanofibrous membranes, poly(D,L)-lactide-co-glycolide and the antibiotics were first dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol. They were electrospun into biodegradable drug-eluting membranes, which were then enveloped on the surface of stainless plates. An elution method and a high-performance liquid chromatography assay were employed to characterize the in vivo and in vitro release rates of the antibiotics from the nanofiber-enveloped plates. The results showed that the biodegradable nanofiber-enveloped plates released high concentrations of vancomycin and ceftazidime (well above the minimum inhibitory concentration) for more than 3 and 8 weeks in vitro and in vivo, respectively. A bacterial inhibition test was carried out to determine the relative activity of the released antibiotics. The bioactivity ranged from 25% to 100%. In addition, the serum creatinine level remained within the normal range, suggesting that the high vancomycin concentration did not affect renal function. By adopting the electrospinning technique, we will be able to manufacture biodegradable drug-eluting implants for the long-term drug delivery of different antibiotics.

Keywords: biodegradable nanofiber-enveloped plates, electrospinning, antibiotics, release characteristics

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]