Back to Journals » International Journal of Nanomedicine » Volume 16

Atomic Layer Deposition of ZrO2 on Titanium Inhibits Bacterial Adhesion and Enhances Osteoblast Viability

Authors Jo Y, Kim YT, Cho H, Ji MK, Heo J, Lim HP

Received 24 December 2020

Accepted for publication 10 February 2021

Published 24 February 2021 Volume 2021:16 Pages 1509—1523

DOI https://doi.org/10.2147/IJN.S298449

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Editor who approved publication: Prof. Dr. Thomas J. Webster


Yujin Jo,1 Yong Tae Kim,2 Hoonsung Cho,2 Min-Kyung Ji,3 Jaeyeong Heo,2,3 Hyun-Pil Lim1

1Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju, Korea; 2Department of Materials Science and Engineering, Chonnam National University, Gwangju, 61186, Korea; 3Optoelectronics Convergence Research Center, Chonnam National University, Gwangju, 61186, Republic of Korea

Correspondence: Hyun-Pil Lim
Department of Prosthodontics, School of Dentistry, Chonnam National University, Gwangju, 61186, Korea
Tel +82-10-2645-7528
Fax +82-62-530-5577
Email mcnihil@jnu.ac.kr
Jaeyeong Heo
Department of Materials Science and Engineering, Chonnam National University, Gwangju, 61186, Korea
Tel +82-62-530-1716
Fax +82-62-530-1699
Email jheo@jnu.ac.kr

Purpose: The study was intended to create a uniform zirconia layer even on the surface of complex structures via atomic layer deposition (ALD). The impact of crystalline zirconia deposited by ALD on bacterial adhesion and osteoblast viability was assessed via surface treatment of dental implants.
Methods: Amorphous zirconia was deposited using an atomic layer deposition reactor (Atomic Classic, CN1, Hwaseong, Korea) on titanium discs. Heating the samples at 400°C resulted in crystallization. Samples were divided into three groups: the control group, the group carrying amorphous ALD-zirconia (Z group), and the heat-treated group following zirconia ALD deposition (ZH group).The surface of each sample was analyzed, followed by the assessment of adhesion of Streptococcus mutans and Porphyromonas gingivalis, and viability and differentiation of MC3T3-E1 cells.
Results: The adhesion of S. mutans and P. gingivalis was significantly reduced in the Z and ZH groups compared with the control group (P < 0.05). The viability of MC3T3-E1 cells was significantly increased in the ZH group compared with the control group (P < 0.001), while no significant differences were observed in the Z group (P > 0.05). Differentiation of MC3T3-E1 cells showed a marginally significant increase in the ZH group compared with the control group (P < 0.1), while no significant differences were found in the Z group (P > 0.1).
Conclusion: Compared with the pure titanium group, the groups that were coated with zirconia via ALD showed a decreased adhesion of S. mutans during the early stages of biofilm formation and P. gingivalis adhesion inducing peri-implantitis, and an increase in MC3T3-E1 cell viability and differentiation. The findings indicate the possibility of treating the implant surface to reduce peri-implantitis and improve osseointegration.

Keywords: atomic layer deposition, ALD, surface treatment, titanium, zirconia, implant

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]