Back to Journals » Diabetes, Metabolic Syndrome and Obesity » Volume 5

Atherosclerosis and atherosensitivity in two southwest Algerian desert rodents, Psammomys obesus and Gerbillus gerbillus, and in Rattus norvegicus

Authors El-Aoufi S, Lazourgui M, Griene L, Maouche

Received 9 June 2012

Accepted for publication 27 July 2012

Published 18 September 2012 Volume 2012:5 Pages 337—345


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Salima El-Aoufi,1 Mohamed-Amine Lazourgui,1 Lakhdar Griene,2 Boubekeur Maouche3

1Laboratoire de Biologie et de Physiologie des Organismes/MMDED, Faculté des Sciences Biologiques, USTHB, El-Alia, Dar El Beida, Algeria; 2Laboratoire d'Hormonologie, Centre Pierre et Marie Curie, C.H.U Mustapha, Algeria; 3Laboratoire de Physicochimie Théorique et Chimie Informatique, Faculté de Chimie, USTHB, El-Alia, Dar El Beida, Algeria

Abstract: Cardiovascular disease, including atherosclerosis, is the leading cause of death in patients with diabetes worldwide; thus, it is a major medical concern. The endothelium contributes to the control of many vascular functions, and clinical observations show that it is a primary target for diabetic syndrome. To get better insight into the mechanisms underlying atherosclerosis, we studied the interspecific differences in the arterial metabolisms of two, Psammomys obesus and Gerbillus gerbillus, as well as Rattus norvegicus (Wistar rat), well known for its atheroresistance. Twenty-two enzymatic activities and six macromolecular substances were histochemically compared in the two desert species and in Wistar aortas (abdominal and thoracic) and arteries (femoral and caudal) embedded in a common block. In the healthy adult rodents, enzyme activities were very intense. They demonstrated that aortic myocytes are capable of various synthesis and catabolism processes. However, considering the frequency of atherosclerosis and its phenotypes, significant differences appeared between the species studied. Our comparative study shows that aortic atherosensitive animals have several common metabolic characteristics, which are found in Psammomys rich in metachromatic glycosaminoglycans (involved in the inhibition of lipolysis and in calcification of the organic matrix), reduced activity in enzymes related to the Krebs cycle (weakening energetic power), and low lipolytic enzyme, adenosine triphosphatase, and adenosine diphosphatase activities. However, the most fundamental pathophysiological difference is the low lipolytic power of the aorta of Psammomys when compared to Wistar rats. This characteristic determines its atherosensitivity and makes this animal model more applicable to the experimental development of atherosclerosis.

Keywords: diet-induced diabetes, CVD, atherosensitivity, artery enzymatic activities, histochemistry, Psammomys obesus

Creative Commons License © 2012 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.