Back to Archived Journals » Energy and Emission Control Technologies » Volume 3

Methane emissions and climatic warming risk from hydraulic fracturing and shale gas development: implications for policy

Authors Howarth R

Received 1 July 2015

Accepted for publication 20 August 2015

Published 8 October 2015 Volume 2015:3 Pages 45—54


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Editor who approved publication: Dr Adolfo Perujo

Video abstract presented by Howarth.

Views: 1015

Robert W Howarth
Department of Ecology and Environmental Biology, Cornell University, Ithaca, NY, USA

Abstract: Over the past decade, shale gas production has increased from negligible to providing >40% of national gas and 14% of all fossil fuel energy in the USA in 2013. This shale gas is often promoted as a bridge fuel that allows society to continue to use fossil fuels while reducing carbon emissions since less carbon dioxide is emitted from natural gas (including shale gas) than from coal and oil per unit of heat energy. Indeed, carbon dioxide emissions from fossil fuel use in the USA declined to some extent between 2009 and 2013, mostly due to economic recession but in part due to replacement of coal by natural gas. However, significant quantities of methane are emitted into the atmosphere from shale gas development: an estimated 12% of total production considered over the full life cycle from well to delivery to consumers, based on recent satellite data. Methane is an incredibly powerful greenhouse gas that is >100-fold greater in absorbing heat than carbon dioxide, while both gases are in the atmosphere and 86-fold greater when averaged over a 20-year period following emission. When methane emissions are included, the greenhouse gas footprint of shale gas is significantly larger than that of conventional natural gas, coal, and oil. Because of the increase in shale gas development over recent years, the total greenhouse gas emissions from fossil fuel use in the USA rose between 2009 and 2013, despite the decrease in carbon dioxide emissions. Given the projections for continued expansion of shale gas production, this trend of increasing greenhouse gas emissions from fossil fuels is predicted to continue through 2040.

Keywords: shale gas, natural gas, methane, greenhouse gases, global warming, bridge fuel

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]