Back to Journals » Journal of Pain Research » Volume 10

Application of the chronic constriction injury of the partial sciatic nerve model to assess acupuncture analgesia

Authors Zhi MJ, Liu K, Zheng ZL, He X, Li T, Sun G, Zhang M, Wang FC, Gao XY, Zhu B

Received 10 April 2017

Accepted for publication 4 August 2017

Published 19 September 2017 Volume 2017:10 Pages 2271—2280

DOI https://doi.org/10.2147/JPR.S139324

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Colin Mak

Peer reviewer comments 2

Editor who approved publication: Dr E. Alfonso Romero-Sandoval

Mu-Jun Zhi,1,2,* Kun Liu,1,* Zhou-Li Zheng,1,3 Xun He,1 Tie Li,2 Guang Sun,1,2 Meng Zhang,4 Fu-Chun Wang,2 Xin-Yan Gao,1 Bing Zhu1

1Department of Physiology, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China; 2College of Acupuncture and Moxibustion, Changchun University of Chinese Medicine, Changchun, People’s Republic of China; 3College of Acupuncture and Moxibution, Shaanxi University of Chinese Medicine, People’s Republic of China; 4Department of Chinese Medicine, Dongli Hospital of Traditional Chinese Medicine, Tianjin, People’s Republic of China

*These authors contributed equally to this work

Purpose: To validate and explore the application of a rat model of chronic constriction injury to the partial sciatic nerve in investigation of acupuncture analgesia.
Methods: Chronic constriction injury of the sciatic nerve (CCI) and chronic constriction injury of the partial sciatic nerve (CCIp) models were generated by ligating either the sciatic nerve trunk or its branches in rats. Both models were evaluated via paw mechanical withdrawal latency (PMWL), paw mechanical withdrawal threshold (PMWT), nociceptive reflex-induced electromyogram (C-fiber reflex EMG), and dorsal root ganglion immunohistochemistry. Electroacupuncture (EA) was performed at GB30 to study the analgesic effects on neuropathic pain and the underlying mechanisms.
Results: Following ligation of the common peroneal and tibial nerves, CCIp rats exhibited hindlimb dysfunction, hind paw shrinkage and lameness, mirroring those of CCI rats (generated by ligating the sciatic nerve trunk). Compared to presurgery measurements, CCIp and CCI modeling significantly decreased the PMWL and PMWT. EA at GB30 increased the PMWL and PMWT in both CCI and CCIp rats. Calcitonin gene-related polypeptide and substance P expressions were apparently increased in both CCI and CCIp groups, but were not different from each other. The C-fiber reflex EMG of the biceps femoris was preserved in CCIp rats, but it could not be recorded in CCI rats on the 5th day after nerve ligation. The C-fiber reflex EMG was reduced at 0, 1, and 2 minutes after EA in CCIp rats, but only at 0 and 1 minute after EA in normal rats.
Conclusion: The CCIp model is better than the CCI model for studying acupuncture analgesia on chronic neuropathic pain and the underlying mechanisms.

Keywords: neuropathic pain, chronic constriction injury, acupuncture, analgesia, C-fiber reflex

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]