Back to Journals » International Journal of Nanomedicine » Volume 6

Application of hyperthermia induced by superparamagnetic iron oxide nanoparticles in glioma treatment

Authors Silva AC, Oliveira TR, Mamani JB, Malheiros SMF, Malavolta L, Pavon LF, Sibov TT, Amaro E Jr, Tannús A, Vidoto ELG, Matins MJ, Santos RS, Gamarra LF

Published 25 March 2011 Volume 2011:6 Pages 591—603

DOI https://doi.org/10.2147/IJN.S14737

Review by Single-blind

Peer reviewer comments 3

André C Silva1, Tiago R Oliveira1,2, Javier B Mamani1, Suzana MF Malheiros3,4, Luciana Malavolta1, Lorena F Pavon1, Tatiana T Sibov1, Edson Amaro Jr1,5, Alberto Tannús6, Edson LG Vidoto6, Mateus J Martins6, Ricardo S Santos6, Lionel F Gamarra1
1Instituto Israelita de Ensino e Pesquisa Albert Einstein, IIEPAE, São Paulo, Brazil; 2Instituto de Física, Universidade de São Paulo, São Paulo, Brazil; 3Departament of Neurology and Neurosurgery, Universidade Federal de São Paulo, São Paulo, Brazil; 4Neuro-Oncology Program of Hospital Israelita Albert Einstein, São Paulo, Brazil; 5Instituto de Radiologia, Faculdade de Medicina; 6CIERMag-Instituto de Física de São Carlos, Universidade de São Paulo, São Paulo, Brazil

Abstract: Gliomas are a group of heterogeneous primary central nervous system (CNS) tumors arising from the glial cells. Malignant gliomas account for a majority of malignant primary CNS tumors and are associated with high morbidity and mortality. Glioblastoma is the most frequent and malignant glioma, and despite the recent advances in diagnosis and new treatment options, its prognosis remains dismal. New opportunities for the development of effective therapies for malignant gliomas are urgently needed. Magnetic hyperthermia (MHT), which consists of heat generation in the region of the tumor through the application of magnetic nanoparticles subjected to an alternating magnetic field (AMF), has shown positive results in both preclinical and clinical assays. The aim of this review is to assess the relevance of hyperthermia induced by magnetic nanoparticles in the treatment of gliomas and to note the possible variations of the technique and its implication on the effectiveness of the treatment. We performed an electronic search in the literature from January 1990 to October 2010, in various databases, and after application of the inclusion criteria we obtained a total of 15 articles. In vitro studies and studies using animal models showed that MHT was effective in the promotion of tumor cell death and reduction of tumor mass or increase in survival. Two clinical studies showed that MHT could be applied safely and with few side effects. Some studies suggested that mechanisms of cell death, such as apoptosis, necrosis, and antitumor immune response were triggered by MHT. Based on these data, we could conclude that MHT proved to be efficient in most of the experiments, and that the improvement of the nanocomposites as well as the AMF equipment might contribute toward establishing MHT as a promising tool in the treatment of malignant gliomas.

Keywords: brain tumor, magnetic hyperthermia, magnetic nanoparticle

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other articles by this author:

Therapeutics with SPION-labeled stem cells for the main diseases related to brain aging: a systematic review

Alvarim LT, Nucci LP, Mamani JB, Marti LC, Aguiar MF, Silva HR, Silva GS, Nucci-da-Silva MP, DelBel EA, Gamarra LF

International Journal of Nanomedicine 2014, 9:3749-3770

Published Date: 11 August 2014

Umbilical cord mesenchymal stem cells labeled with multimodal iron oxide nanoparticles with fluorescent and magnetic properties: application for in vivo cell tracking

Sibov TT, Pavon LF, Miyaki LA, Mamani JB, Nucci LP, Alvarim LT, Silveira PH, Marti LC, Gamarra LF

International Journal of Nanomedicine 2014, 9:337-350

Published Date: 8 January 2014

Ferromagnetic resonance for the quantification of superparamagnetic iron oxide nanoparticles in biological materials

Lionel F Gamarra, Antonio J daCosta-Filho, Javier B Mamani, et al

International Journal of Nanomedicine 2010, 5:203-211

Published Date: 25 March 2010

Readers of this article also read:

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

Acquired hemophilia A: emerging treatment options

Janbain M, Leissinger CA, Kruse-Jarres R

Journal of Blood Medicine 2015, 6:143-150

Published Date: 8 May 2015

A new recombinant factor VIII: from genetics to clinical use

Santagostino E

Drug Design, Development and Therapy 2014, 8:2507-2515

Published Date: 12 December 2014

Second case report of successful electroconvulsive therapy for a patient with schizophrenia and severe hemophilia A

Saito N, Shioda K, Nisijima K, Kobayashi T, Kato S

Neuropsychiatric Disease and Treatment 2014, 10:865-867

Published Date: 16 May 2014

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010