Back to Journals » Journal of Pain Research » Volume 5

Antihyperalgesic activity of nucleoside transport inhibitors in models of inflammatory pain in guinea pigs

Authors Maes S, Pype, Hoffmann V, Biermans M, Meert T

Received 17 June 2012

Accepted for publication 22 August 2012

Published 12 October 2012 Volume 2012:5 Pages 391—400

DOI https://doi.org/10.2147/JPR.S35108

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 2

Sabine S Maes,1,2 Stefan Pype,1 Vincent LH Hoffmann,3 Maria Biermans,1 Theo F Meert1

1CNS Discovery Research, Pain and Neurology, Johnson & Johnson Pharmaceutical Research and Development, a Division of Janssen Pharmaceutica, Beerse, Belgium; 2Department of Anaesthesiology, University Hospital Antwerp, Edegem, Belgium; 3Department of Anesthesiology, Intensive Care and Pain Treatment Center, Amphia Hospital, Breda, The Netherlands

Background and methods: The role of the endogenous purine nucleoside, adenosine, in nociception is well established. Inhibition of the equilibrative nucleoside transporter (ENT1) prevents adenosine uptake into cells, and could therefore enhance the antinociceptive properties of adenosine. The effects of ENT1 inhibition were studied in two animal models of inflammatory pain. Analgesic activity was assessed in a complete Freund's adjuvant (CFA)-induced and carrageenan-induced mechanical and thermal hyperalgesia model in the guinea pig.
Results: Draflazine, dipyridamole, dilazep, lidoflazine, soluflazine, and KF24345 showed efficacy in the CFA thermal hyperalgesia model. Draflazine, the most potent compound in this test, was further characterized in the CFA model of mechanical hyperalgesia and the carrageenan inflammation model of thermal and mechanical hyperalgesia, where it completely reversed the hypersensitivity. The antihyperalgesic effects of draflazine (10 mg/kg, administered subcutaneously) were attenuated by the A1 receptor antagonist, cyclopentyltheophylline (5–40 mg/kg, administered intraperitoneally), by the nonselective adenosine antagonist, caffeine (10–40 mg/kg intraperitoneally), and by the A2 antagonist, DMPX (10 mg/kg administered intraperitoneally).
Conclusion: ENT1 inhibition is an effective way of reversing mechanical and thermal inflammatory hyperalgesia in the guinea pig, and these effects are mediated by enhancement of endogenous adenosine levels. Both A1 and A2 adenosine receptor subtypes are likely to be involved.

Keywords: adenosine, nucleoside transport inhibition, nociception, inflammation, hyperalgesia

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010