Back to Journals » Neuropsychiatric Disease and Treatment » Volume 15

Analysis of correlation between cerebral perfusion and KIM score of white matter lesions in patients with Alzheimer’s disease

Authors Li RR, He YS, Liu M, Nie ZY, Huang LH, Lu Z, Jin LJ, Li YX

Received 27 February 2019

Accepted for publication 5 August 2019

Published 18 September 2019 Volume 2019:15 Pages 2705—2714

DOI https://doi.org/10.2147/NDT.S207069

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Melinda Thomas

Peer reviewer comments 2

Editor who approved publication: Professor Jun Chen


Ren-Ren Li,1,* Yu-Sheng He,1,* Meng Liu,1 Zhi-Yu Nie,1 Li-He Huang,2 Zheng Lu,3 Ling-Jing Jin,1 Yun-Xia Li1

1Department of Neurology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, People’s Republic of China; 2School of Foreign Languages, Research Center for Ageing, Language and Care, Tongji University, Shanghai 200092, People’s Republic of China; 3Department of Psychiatry, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, People’s Republic of China

*These authors contributed equally to this work

Correspondence: Yun-Xia Li
Department of Neurology, Tongji Hospital, Tongji University School of Medicine, 389 Xincun Road, Shanghai 200065, People’s Republic of China
Email doctorliyunxia@163.com

Purpose: This study aimed to characterize white matter lesions (WMLs) and regional cerebral perfusion, and evaluate their correlations with cognitive deficits in Alzheimer’s disease (AD) patients.
Patient and methods: One hundred and twenty-eight patients with AD (AD group) and 75 subjects without AD (control group) were recruited. The medical information was collected from each subject. Montreal cognitive assessment (MoCA) was employed for the assessment of cognition. Cranial MRI was performed, and the KIM scoring system was used to evaluate the white matter hyperintensity. The CT perfusion (CTP) imaging was employed to assess the whole cerebral perfusion, and the region of interest (ROI) was selected to determine the blood perfusion at different parts.
Results: The education level and MoCA score in AD group were significantly lower than in control group (P<0.001). The KIM score of juxtaventricular WML (JVWMLs) was significantly different between two groups (P<0.05) and AD group showed a higher incidence of severe JVWML and periventricular WML (PVWMLs); in AD group, the total KIM score and KIM scores of JVWMLs, PVWMLs and deep WML (DWMLs) showed negative relationships with the MoCA score (P<0.001). As compared to control group, the blood perfusion of either whole brain or different parts in the AD group reduced significantly (P<0.05). In the AD group, there was a negative correlations of blood perfusion at JVWM and PVWM with corresponding KIM scores (P<0.05 or 0.01). In the AD group, the blood perfusions of the whole brain, JVWMLs, PVWMLs and deep WML were negatively related to MoCA score (P<0.05).
Conclusion: In conclusion, the cognitive deficits in the AD patients are associated with the degree of WMLs, especially the JVWML, PVWML and DWML as well as with the reduced perfusion of JVWM, PVWM and deep WM.

Keywords: Alzheimer’s disease, cerebral blood flow, white matter lesion, KIM score

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]