Back to Journals » International Journal of Nanomedicine » Volume 8 » Supplement 1 Nanoinformatics

Using mathematical models to understand the effect of nanoscale roughness on protein adsorption for improving medical devices

Authors Ercan B , Khang D , Carpenter J, Webster TJ 

Received 27 April 2013

Accepted for publication 17 July 2013

Published 16 September 2013 Volume 2013:8(Supplement 1 Nanoinformatics) Pages 75—81

DOI https://doi.org/10.2147/IJN.S47286

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2



Batur Ercan,1 Dongwoo Khang,2 Joseph Carpenter,3 Thomas J Webster1

1Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 2School of Materials Science and Engineering and Center for PRC and RIGET, Gyeongsang National University, Jinju, South Korea; 3School of Medicine, Stanford University, Stanford, CA, USA

Abstract: Surface roughness and energy significantly influence protein adsorption on to biomaterials, which, in turn, controls select cellular adhesion to determine the success and longevity of an implant. To understand these relationships at a fundamental level, a model was originally proposed by Khang et al to correlate nanoscale surface properties (specifically, nanoscale roughness and energy) to protein adsorption, which explained the greater cellular responses on nanostructured surfaces commonly reported in the literature today. To test this model for different surfaces from what was previously used to develop that model, in this study we synthesized highly ordered poly(lactic-co-glycolic acid) surfaces of identical chemistry but altered nanoscale surface roughness and energy using poly(dimethylsiloxane) molds of polystyrene beads. Fibronectin and collagen type IV adsorption studies showed a linear adsorption behavior as the surface nanoroughness increased. This supported the general trends observed by Khang et al. However, when fitting such data to the mathematical model established by Khang et al, a strong correlation did not result. Thus, this study demonstrated that the equation proposed by Khang et al to predict protein adsorption should be modified to accommodate for additional nanoscale surface property contributions (ie, surface charge) to make the model more accurate. In summary, results from this study provided an important step in developing future mathematical models that can correlate surface properties (such as nanoscale roughness and surface energy) to initial protein adsorption events important to promote select cellular adhesion. These criteria are critical for the fundamental understanding of the now well-documented increased tissue growth on nanoscale materials.

Keywords: nanophase topography, surface energy, collagen type IV, fibronectin, adsorption, modeling, nanoscale roughness, proteins

Creative Commons License © 2013 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.