Back to Journals » Medical Devices: Evidence and Research » Volume 7

Use of a radio frequency shield during 1.5 and 3.0 Tesla magnetic resonance imaging: experimental evaluation

Authors Favazza C, King D, Edmonson H, Felmlee J, Rossman P, Hangiandreou N, Watson R, Gorny K

Received 31 May 2014

Accepted for publication 2 July 2014

Published 29 October 2014 Volume 2014:7 Pages 363—370

DOI https://doi.org/10.2147/MDER.S68657

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3


Christopher P Favazza, Deirdre M King, Heidi A Edmonson, Joel P Felmlee, Phillip J Rossman, Nicholas J Hangiandreou, Robert E Watson, Krzysztof R Gorny

Department of Radiology, Mayo Clinic, Rochester, MN, USA

Abstract: Radiofrequency (RF) shields have been recently developed for the purpose of shielding portions of the patient's body during magnetic resonance imaging (MRI) examinations. We present an experimental evaluation of a commercially available RF shield in the MRI environment. All tests were performed on 1.5 T and 3.0 T clinical MRI scanners. The tests were repeated with and without the RF shield present in the bore, for comparison. Effects of the shield, placed within the scanner bore, on the RF fields generated by the scanner were measured directly using tuned pick-up coils. Attenuation, by as much as 35 dB, of RF field power was found inside the RF shield. These results were supported by temperature measurements of metallic leads placed inside the shield, in which no measurable RF heating was found. In addition, there was a small, simultaneous detectable increase (~1 dB) of RF power just outside the edges of the shield. For these particular scanners, the autocalibrated RF power levels were reduced for scan locations prescribed just outside the edges of the shield, which corresponded with estimations based on the pick-up coil measurements. Additionally, no significant heating during MRI scanning was observed on the shield surface. The impact of the RF shield on the RF fields inside the magnet bore is likely to be dependent on the particular model of the RF shield or the MRI scanner. These results suggest that the RF shield could be a valuable tool for clinical MRI practices.

Keywords: radiofrequency shield, magnetic resonance imaging, radiofrequency attenuation

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]