Back to Journals » International Journal of Nanomedicine » Volume 13

Tumor-specific delivery of therapeutic siRNAs by anti-EGFR immunonanoparticles

Authors Kim JS, Kim MW, Kang SJ, Jeong HY, Park SI, Lee YK, Kim HS, Kim KS, Park YS

Received 9 January 2018

Accepted for publication 18 April 2018

Published 27 August 2018 Volume 2018:13 Pages 4817—4830


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Dr Thomas Webster

Jung Seok Kim,1,* Min Woo Kim,1,* Seong Jae Kang,1,* Hwa Yeon Jeong,1 Sang Il Park,1 Yeon Kyung Lee,1 Hong Sung Kim,2 Keun Sik Kim,3 Yong Serk Park1

1Department of Biomedical Laboratory Science, Yonsei University, Wonju, Republic of Korea; 2Department of Biomedical Laboratory Science, Korea Nazarene University, Cheonan, Republic of Korea; 3Department of Biomedical Laboratory Science, Konyang University, Daejeon, Republic of Korea

*These authors contributed equally to this work

Background: Efficient target-specific siRNA delivery has always been a primary concern in the field of siRNA clinical application.
Purpose: In this study, four different types of anti-epidermal growth factor receptor (EGFR) antibody-conjugated immunonanoparticles were prepared and tested for cancer cell-targeted therapeutic siRNA delivery.
Materials and methods: The prepared nanoparticles encapsulating siRNAs were characterized by gel retardation and particle analysis using a Zetasizer. In vitro transfection and reduction of target genes, vimentin and JAK3, were determined using quantitative reverse transcription polymerase chain reaction. In vivo tumor targeting and antitumoral efficacies of the nanoparticles were evaluated in mice carrying tumors.
Results: Among these immunonanoparticles, anti-EGFR immunolipoplexes and immunoviroplexes exhibited remarkable cell binding and siRNA delivery to EGFR-expressing tumor cells compared to immunoliposomes and immunovirosomes. Especially, the anti-EGFR immunoviroplexes exhibited the most efficient siRNA transfection to target tumor cells. Therefore, antitumoral vimentin and Janus kinase-3 siRNAs were loaded in the anti-EGFR immunolipoplexes and immunoviroplexes, which were tested in mice carrying SK-OV-3 tumor xenografts. In fact, the therapeutic siRNAs were efficiently delivered to the tumor tissues by both delivery vehicles, resulting in significant inhibition of tumor growth. Moreover, administration of doxorubicin in combination with anti-EGFR immunoviroplexes resulted in remarkable and synergistic tumor growth inhibition.
Conclusion: This study provides experimental proof that cancer cell-targeted immunoviroplexes are an efficient siRNA delivery system for cancer therapy. Moreover, this study also suggests that a combination of conventional chemotherapy and tumor-directed anticancer siRNA therapy would be a better modality for cancer treatment.

Keywords: EGFR, siRNA delivery, anti-EGFR immunonanoparticles, anti-EGFR immunoviroplexes, combinatorial therapy

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]