Back to Journals » International Journal of Nanomedicine » Volume 10 » Supplement 1 Challenges in biomaterials research

Tribological and corrosion behaviors of warm- and hot-rolled Ti-13Nb-13Zr alloys in simulated body fluid conditions

Authors Lee T, Mathew E, Rajaraman S, Manivasagam G, Singh A, Lee CS

Received 7 January 2015

Accepted for publication 6 May 2015

Published 1 October 2015 Volume 2015:10(Supplement 1 Challenges in biomaterials research) Pages 207—212

DOI https://doi.org/10.2147/IJN.S79996

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 5

Editor who approved publication: Dr Thomas J Webster


Taekyung Lee,1 Eshaan Mathew,2 Santhosh Rajaraman,2 Geetha Manivasagam,2 Ashok Kumar Singh,3 Chong Soo Lee4

1Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA; 2Centre for Biomaterials Science and Technology, School for Mechanical and Building Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, India; 3Defense Metallurgical Research Laboratory, Hyderabad, India; 4Graduate Institute of Ferrous Technology (GIFT), Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea

Abstract: Development of submicrocrystalline structure in biomedical alloy such as Ti-13Nb-13Zr (in wt%) through warm-rolling process has been found to enhance mechanical properties compared to conventional thermomechanical processing routes including hot-rolling process. The present study investigated the tribological and corrosion behaviors of warm-rolled (WR) and hot-rolled Ti-13Nb-13Zr alloys which have not been studied to date. Both tribological and corrosion experiments were carried out in simulated body fluid conditions (Hank’s solution at 37°C) based on the fact that the investigated alloys would be used in a human body as orthopedic implants. The WR Ti-13Nb-13Zr demonstrated a submicrocrystalline structure that provided a significant enhancement in hardness, strength, and corrosion resistance. Meanwhile, there was no notable difference in wear resistance between the WR and hot-rolled samples despite the different microstructure and hardness. The present study confirmed the enormous potential of WR Ti-13Nb-13Zr with not only great mechanical properties but also high corrosion resistance in the simulated body fluid.

Keywords: titanium alloy, multi-pass caliber-rolling, grain refinement, tribology, corrosion

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]