Back to Journals » International Journal of Nanomedicine » Volume 6

Treatment of oral squamous cell carcinoma using anti-HER2 immunonanoshells

Authors Fekrazad R, Hakimiha N, Farokhi E, Rasaee MJ, Ardestani MS, Kalhori KA, Sheikholeslami F

Published 9 November 2011 Volume 2011:6 Pages 2749—2755

DOI https://doi.org/10.2147/IJN.S24548

Review by Single-blind

Peer reviewer comments 3

Reza Fekrazad2, Neda Hakimiha3, Enice Farokhi3, Mohammad Javad Rasaee4, Mehdi Shafiee Ardestani5, Katayoun AM Kalhori2, Farzaneh Sheikholeslami1
1Research & Development Department, Production and Research Division of the Pasteur Institute of Iran, Karaj, Iran; 2Dental Department, AJA University of Medical Sciences, Laser Research Center, Dental Faculty, Tehran University of Medical Sciences; 3Dentistry Department, Faculty of Dentistry, Shahed University, Tehran, Iran; 4Department of Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; 5Hepatitis and AIDS Department, Pasteur Institute of Iran, Tehran

Background: Worldwide, oral squamous cell carcinoma (potentially mediated by HER2) is recognized as the most commonly occurring malignant neoplasm of the oral cavity. Anti-HER2 nanobodies conjugated to gold-silica nanoshells and used as photothermal treatment for oral squamous cell carcinoma may provide a novel therapeutic alternative to current treatment for this disease.
Methods: KB epithelial or HeLaS3 cell cultures (controls) were exposed to these immunonanoshells, and plasmon resonance electron initiation specific to gold was employed to burn the tumor cells.
Results: Following this treatment, significant cell death occurred in the KB tumor cell cultures while there was no evidence of cellular damage or death in the HeLaS3 cell cultures.
Conclusion: These findings suggest that photothermal treatment of oral squamous cell carcinoma has considerable advantages.

Keywords: anti-HER2 immunonanoshells, gold-silica nanoshells, photothermal treatment, oral squamous cell carcinoma

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Perioperative management of hemophilia patients receiving total hip and knee arthroplasty: a complication report of two cases

Tateiwa T, Takahashi Y, Ishida T, Kubo K, Masaoka T, Shishido T, Sano K, Yamamoto K

Therapeutics and Clinical Risk Management 2015, 11:1383-1389

Published Date: 15 September 2015

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

Acquired hemophilia A: emerging treatment options

Janbain M, Leissinger CA, Kruse-Jarres R

Journal of Blood Medicine 2015, 6:143-150

Published Date: 8 May 2015

A new recombinant factor VIII: from genetics to clinical use

Santagostino E

Drug Design, Development and Therapy 2014, 8:2507-2515

Published Date: 12 December 2014

Second case report of successful electroconvulsive therapy for a patient with schizophrenia and severe hemophilia A

Saito N, Shioda K, Nisijima K, Kobayashi T, Kato S

Neuropsychiatric Disease and Treatment 2014, 10:865-867

Published Date: 16 May 2014

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

The use of PEGylated liposomes in the development of drug delivery applications for the treatment of hemophilia

Rivka Yatuv, Micah Robinson, Inbal Dayan-Tarshish, et al

International Journal of Nanomedicine 2010, 5:581-591

Published Date: 6 August 2010