Back to Journals » International Journal of Nanomedicine » Volume 7

Treating acute cystitis with biodegradable micelle-encapsulated quercetin

Authors Wang B, Gao X, Men K, Qiu J, Yang B, Gou M, Huang MJ, Huang N, Qian ZY, Zhao X, Wei YQ

Received 23 December 2011

Accepted for publication 30 January 2012

Published 8 May 2012 Volume 2012:7 Pages 2239—2247


Review by Single anonymous peer review

Peer reviewer comments 5

Bi Lan Wang1, Xiang Gao1,2, Ke Men1, Jinfeng Qiu1, Bowen Yang3, Ma Ling Gou1, Mei Juan Huang1, Ning Huang2, Zhi Yong Qian1, Xia Zhao1, Yu Quan Wei1

1State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, 2Department of Pathophysiology, College of Preclinical and Forensic Medical Sciences, 3College of Life Science, Sichuan University, Chengdu, People’s Republic of China

Abstract: Intravesical application of an anti-inflammatory drug is an efficient strategy for acute cystitis therapy. Quercetin (QU) is a potent anti-inflammatory agent; however, its poor water solubility restricts its clinical application. In an attempt to improve water solubility of QU, biodegradable monomethoxy poly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL) micelles were used to encapsulate QU by self-assembly methods, creating QU/MPEG-PCL micelles. These QU/MPEG-PCL micelles with DL of 7% had a mean particle size of ~34 nm, and could release QU for an extended period in vitro. The in vivo study indicated that intravesical application of MPEG-PCL micelles did not induce any toxicity to the bladder, and could efficiently deliver cargo to the bladder. Moreover, the therapeutic efficiency of intravesical administration of QU/MPEG-PCL micelles on acute cystitis was evaluated in vivo. Results indicated that QU/MPEG-PCL micelle treatment efficiently reduced the edema and inflammatory cell infiltration of the bladder in an Escherichia coli-induced acute cystitis model. These data suggested that MPEG-PCL micelle was a candidate intravesical drug carrier, and QU/MPEG-PCL micelles may have potential application in acute cystitis therapy.

Keywords: nanomedicine, MPEG-PCL, self-assembly

Creative Commons License © 2012 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.