Back to Journals » International Journal of Nanomedicine » Volume 7

Titanium dioxide induces apoptotic cell death through reactive oxygen species-mediated Fas upregulation and Bax activation

Authors Yoo, Yoon, Kwon, Hyun, Woo, Kim, Lim, Suh, Kim, Yoon TH, Lee S

Received 28 November 2011

Accepted for publication 9 January 2012

Published 5 March 2012 Volume 2012:7 Pages 1203—1214

DOI https://doi.org/10.2147/IJN.S28647

Review by Single-blind

Peer reviewer comments 3

Ki-Chun Yoo1, Chang-Hwan Yoon1, Dongwook Kwon2, Kyung-Hwan Hyun1, Soo Jung Woo1, Rae-Kwon Kim1, Eun-Jung Lim1, Yongjoon Suh1, Min-Jung Kim1, Tae Hyun Yoon2, Su-Jae Lee1

1Laboratory of Molecular Biochemistry, 2Laboratory of Nanoscale Characterization and Environmental Chemistry, Department of Chemistry, Hanyang University, Seoul, Republic of Korea

Background: Titanium dioxide (TiO2) has been widely used in many areas, including biomedicine, cosmetics, and environmental engineering. Recently, it has become evident that some TiO2 particles have a considerable cytotoxic effect in normal human cells. However, the molecular basis for the cytotoxicity of TiO2 has yet to be defined.
Methods and results: In this study, we demonstrated that combined treatment with TiO2 nanoparticles sized less than 100 nm and ultraviolet A irradiation induces apoptotic cell death through reactive oxygen species-dependent upregulation of Fas and conformational activation of Bax in normal human cells. Treatment with P25 TiO2 nanoparticles with a hydrodynamic size distribution centered around 70 nm (TiO2P25–70) together with ultraviolet A irradiation-induced caspase-dependent apoptotic cell death, accompanied by transcriptional upregulation of the death receptor, Fas, and conformational activation of Bax. In line with these results, knockdown of either Fas or Bax with specific siRNA significantly inhibited TiO2-induced apoptotic cell death. Moreover, inhibition of reactive oxygen species with an antioxidant, N-acetyl-L-cysteine, clearly suppressed upregulation of Fas, conformational activation of Bax, and subsequent apoptotic cell death in response to combination treatment using TiO2P25–70 and ultraviolet A irradiation.
Conclusion: These results indicate that sub-100 nm sized TiO2 treatment under ultraviolet A irradiation induces apoptotic cell death through reactive oxygen species-mediated upregulation of the death receptor, Fas, and activation of the preapoptotic protein, Bax. Elucidating the molecular mechanisms by which nanosized particles induce activation of cell death signaling pathways would be critical for the development of prevention strategies to minimize the cytotoxicity of nanomaterials.

Keywords: TiO2, reactive oxygen species, apoptotic cell death, Fas upregulation, Bax activation, mitochondrial membrane potential loss, caspase activation

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Surface engineered antifouling optomagnetic SPIONs for bimodal targeted imaging of pancreatic cancer cells

Wang X, Xing X, Zhang B, Liu F, Cheng Y, Shi D

International Journal of Nanomedicine 2014, 9:1601-1615

Published Date: 27 March 2014

Zerumbone-loaded nanostructured lipid carrier induces G2/M cell cycle arrest and apoptosis via mitochondrial pathway in a human lymphoblastic leukemia cell line

Rahman HS, Rasedee A, Abdul AB, Zeenathul NA, Othman HH, Yeap SK, How CW, Wan Nor Hafiza WAG

International Journal of Nanomedicine 2014, 9:527-538

Published Date: 16 January 2014

Targeted therapy using nanotechnology: focus on cancer

Sanna V, Pala N, Sechi M

International Journal of Nanomedicine 2014, 9:467-483

Published Date: 15 January 2014

Biofunctionalization of a titanium surface with a nano-sawtooth structure regulates the behavior of rat bone marrow mesenchymal stem cells

Zhang WJ, Li ZH, Liu Y, Ye DX, Li JH, Xu LY, Wei B, Zhang XL, Liu XY, Jiang XQ

International Journal of Nanomedicine 2012, 7:4459-4472

Published Date: 13 August 2012

The cadmium–mercaptoacetic acid complex contributes to the genotoxicity of mercaptoacetic acid-coated CdSe-core quantum dots

Tang WK, Fan JP, He YD, Huang BH, Liu HH, Pang DW, Xie ZX

International Journal of Nanomedicine 2012, 7:2631-2640

Published Date: 24 May 2012

Mononuclear phagocyte intercellular crosstalk facilitates transmission of cell-targeted nanoformulated antiretroviral drugs to human brain endothelial cells

Kanmogne GD, Singh S, Roy U, Liu X, McMillan J, Gorantla S, Balkundi S, Smith N, Alnouti Y, Gautam N, Zhou Y, Poluektova L, Kabanov A, Bronich T, Gendelman HE

International Journal of Nanomedicine 2012, 7:2373-2388

Published Date: 8 May 2012

Preparation and evaluation of polymeric microparticulates for improving cellular uptake of gemcitabine

Lim JH, You SK, Baek JS, Hwang CJ, Na YG, Shin SC, Cho CW

International Journal of Nanomedicine 2012, 7:2307-2314

Published Date: 7 May 2012

Treating glioblastoma multiforme with selective high-dose liposomal doxorubicin chemotherapy induced by repeated focused ultrasound

Yang FY, Teng MC, Lu M, Liang HF, Lee YR, Yen CC, Liang ML, Wong TT

International Journal of Nanomedicine 2012, 7:965-974

Published Date: 21 February 2012

Analysis of in situ and ex vivo αVß3 integrin expression during experimental carotid atherogenesis

Yao Y, Jiang Y, Sheng Z, Zhang Y, An Y, Yan F, Ma G, Liu N, Teng G, Cheng Z

International Journal of Nanomedicine 2012, 7:641-649

Published Date: 8 February 2012