Back to Journals » International Journal of Nanomedicine » Volume 6

TiO2 micro-nano-hybrid surface to alleviate biological aging of UV-photofunctionalized titanium

Authors Iwasa F, Tsukimura N, Sugita Y, Kanuru RK, Kubo K, Hasnain H, Att W, Ogawa T

Published 28 June 2011 Volume 2011:6 Pages 1327—1341

DOI https://doi.org/10.2147/IJN.S22099

Review by Single-blind

Peer reviewer comments 2

Fuminori Iwasa1, Naoki Tsukimura1, Yoshihiko Sugita1, Rajita Kodali Kanuru1, Katsutoshi Kubo1, Hafiz Hasnain1, Wael Att1,2, Takahiro Ogawa1
1Laboratory of Bone and Implant Sciences (LBIS), The Weintraub Center for Reconstructive Biotechnology, Division of Advanced Prosthodontics, Biomaterials and Hospital Dentistry, UCLA School of Dentistry, Los Angeles, CA, USA; 2Department of Prosthodontics, Dental School, Albert-Ludwigs University, Freiburg, Germany

Abstract: Bioactivity and osteoconductivity of titanium degrade over time after surface processing. This time-dependent degradation is substantial and defined as the biological aging of titanium. UV treatment has shown to reactivate the aged surfaces, a process known as photofunctionalization. This study determined whether there is a difference in the behavior of biological aging for titanium with micro-nano-hybrid topography and titanium with microtopography alone, following functionalization. Titanium disks were acid etched to create micropits on the surface. Micro-nano-hybrid surfaces were created by depositioning 300-nm diameter TiO2 nodules onto the micropits using a previously established self-assembly protocol. These disks were stored for 8 weeks in the dark to allow sufficient aging, then treated with UV light for 48 hours. Rat bone marrow–derived osteoblasts were cultured on fresh disks (immediately after UV treatment), 3-day-old disks (disks stored for 3 days after UV treatment), and 7-day-old disks. The rates of cell attachment, spread, proliferation, and levels of alkaline phosphatase activity, and calcium deposition were reduced by 30%–50% on micropit surfaces, depending on the age of the titanium. In contrast, 7-day-old hybrid surfaces maintained equivalent levels of bioactivity compared with the fresh surfaces. Both micropit and micro-nano-hybrid surfaces were superhydrophilic immediately after UV treatment. However, after 7 days, the micro-nano-hybrid surfaces became hydrorepellent, while the micropit surfaces remained hydrophilic. The sustained bioactivity levels of the micro-nano-hybrid surfaces were nullified by treating these surfaces with Cl- anions. A thin TiO2 coating on the micropit surface without the formation of nanonodules did not result in the prevention or alleviation of the time-dependent decrease in biological activity. In conclusion, the micro-nano-hybrid titanium surfaces may slow the rate of time-dependent degradation of titanium bioactivity after UV photofunctionalization compared with titanium surfaces with microtopography alone. This antibiological aging effect was largely regulated by its sustained electropositivity uniquely conferred in TiO2 nanonodules, and was independent of the degree of hydrophilicity. These results demonstrate the potential usefulness of these hybrid surfaces to effectively utilize the benefits of UV photofunctionalization and provide a model to explore the mechanisms underlying antibiological aging properties.

Keywords: bone–titanium integration, nanonodule, super osseointegration, dental and orthopedic implants, nanotechnology
 

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other articles by this author:

UV photofunctionalization promotes nano-biomimetic apatite deposition on titanium

Saita M, Ikeda T, Yamada M, Kimoto K, Lee MC, Ogawa T

International Journal of Nanomedicine 2016, 11:223-234

Published Date: 12 January 2016

Bone integration capability of nanopolymorphic crystalline hydroxyapatite coated on titanium implants

Yamada M, Ueno T, Tsukimura N, Ikeda T, Nakagawa K, Hori N, Suzuki T, Ogawa T

International Journal of Nanomedicine 2012, 7:859-873

Published Date: 17 February 2012

Nanometer-thin TiO2 enhances skeletal muscle cell phenotype and behavior

Ishizaki K, Sugita Y, Iwasa F, Minamikawa H, Ueno T, Yamada M, Suzuki T, Ogawa T

International Journal of Nanomedicine 2011, 6:2191-2203

Published Date: 3 October 2011

Readers of this article also read:

Effect of molecular weight of polyethyleneimine on loading of CpG oligodeoxynucleotides onto flake-shell silica nanoparticles for enhanced TLR9-mediated induction of interferon-α

Manoharan Y, Ji Q, Yamazaki T, Chinnathambi S, Chen S, Ganesan S, Hill JP, Ariga K, Hanagata N

International Journal of Nanomedicine 2012, 7:3625-3635

Published Date: 16 July 2012

Simple room-temperature preparation of high-yield large-area graphene oxide

Huang NM, Lim HN, Chia CH, Yarmo MA, Muhamad MR

International Journal of Nanomedicine 2011, 6:3443-3448

Published Date: 19 December 2011

The efficacy of mitochondrial targeting antiresistant epirubicin liposomes in treating resistant leukemia in animals

Men Y, Wang XX, Li RJ, Zhang Y, Tian W, Yao HJ, Ju RJ, Ying X, Zhou J, Li N, Zhang L, Yu Y, Lu WL

International Journal of Nanomedicine 2011, 6:3125-3137

Published Date: 2 December 2011

Treatment of oral squamous cell carcinoma using anti-HER2 immunonanoshells

Fekrazad R, Hakimiha N, Farokhi E, Rasaee MJ, Ardestani MS, Kalhori KA, Sheikholeslami F

International Journal of Nanomedicine 2011, 6:2749-2755

Published Date: 9 November 2011

Solid lipid nanoparticle suspension enhanced the therapeutic efficacy of praziquantel against tapeworm

Xie S, Pan B, Shi B, Zhang Z, Zhang X, Wang M, Zhou W

International Journal of Nanomedicine 2011, 6:2367-2374

Published Date: 18 October 2011

Quantum dot-based quantitative immunofluorescence detection and spectrum analysis of epidermal growth factor receptor in breast cancer tissue arrays

Yang XQ, Chen C, Peng CW, Hou JX, Liu SP, Qi CB, Gong YP, Zhu XB, Pang DW, Li Y

International Journal of Nanomedicine 2011, 6:2265-2273

Published Date: 11 October 2011

Thermal and ultrasonic influence in the formation of nanometer scale hydroxyapatite bio-ceramic

Poinern GE, Brundavanam RK, Le XT, Djordjevic S, Prokic M, Fawcett D

International Journal of Nanomedicine 2011, 6:2083-2095

Published Date: 23 September 2011

Preliminary biocompatibility investigation of magnetic albumin nanosphere designed as a potential versatile drug delivery system

Estevanato L, Cintra D, Baldini N, Portilho F, Barbosa L, Martins O, Lacava B, Miranda-Vilela AL, Tedesco AC, Báo S, Morais PC, Lacava ZGM

International Journal of Nanomedicine 2011, 6:1709-1717

Published Date: 18 August 2011

Gd3+-DTPA-DG: novel nanosized dual anticancer and molecular imaging agent

Amanlou M, Siadat SD, Ebrahimi SES, Alavi A, Aghasadeghi MR, Ardestani MS, Shanehsaz S, Ghorbani M, Mehravi B, Alavidjeh MS, Jabbari-Arabzadeh A, Abbasi M

International Journal of Nanomedicine 2011, 6:747-763

Published Date: 11 April 2011