Back to Journals » International Journal of Nanomedicine » Volume 12

Thermosensitive hydrogel based on chitosan and its derivatives containing medicated nanoparticles for transcorneal administration of 5-fluorouracil

Authors Fabiano A, Bizzarri R, Zambito Y

Received 6 September 2016

Accepted for publication 1 November 2016

Published 16 January 2017 Volume 2017:12 Pages 633—643


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 4

Editor who approved publication: Dr Thomas Webster

Angela Fabiano,1 Ranieri Bizzarri,2 Ylenia Zambito1

Department of Pharmacy, University of Pisa, 2NEST, Istituto Nanoscienze CNR (CNR-NANO) and Scuola Normale Superiore, Pisa, Italy

Abstract: A thermosensitive ophthalmic hydrogel (TSOH) – fluid at 4°C (instillation temperature), semisolid at 35°C (eye temperature), which coupled the dosing accuracy and administration ease of eyedrops with the increased ocular bioavailability of a hydrogel – was prepared by gelling a chitosan hydrochloride (ChHCl) solution (27.8 mg/mL) medicated with 1.25 mg/mL 5-fluorouracil (5-FU) with β-glycerophosphate 0.8 mg/mL. Polymer mixtures, where Ch was partially (10%, 15%, or 20%) replaced by quaternary ammonium–chitosan conjugates (QA-Ch) or thiolated derivatives thereof, were also used to modulate 5-FU-release properties of TSOH. Also, Ch-based nanoparticles (NPs; size after lyophilization and redispersion 341.5±15.2 nm, polydispersity 0.315±0.45, ζ-potential 10.21 mV) medicated with 1.25 mg/mL 5-FU prepared by ionotropic cross-linking of Ch with hyaluronan were introduced into TSOH. The 5-FU binding by TSOH polymers in the sol state was maximum with plain Ch (31.4%) and tended to decrease with increasing QA presence in polymer mixture. 5-FU release from TSOH with or without NPs was diffusion-controlled and linear in √t. The different TSOH polymers were compared on a diffusivity basis by comparing the slopes of √t plots. These showed a general decrease with NP-containing TSOH, which was the most marked with the TSOH, where Ch was 20% replaced by the derivative QA-Ch50. This formulation and that not containing NP were instilled in rabbits and the 5-FU transcorneal penetration was measured by analyzing the aqueous humor. Both TSOH solutions increased the area under the curve (0–8 hours) 3.5 times compared with the plain eyedrops, but maximum concentration for the NP-free TSOH was about 0.65 µg/mL, followed by a slow decline, while the NP-containing one showed a plateau (0.25–0.3 µg/mL) in a time interval of 0.5–7 hours. This is ascribed to the ability of this TSOH to control drug release to a zero order and that of NPs to be internalized by corneal cells.

Keywords: thermosensitive hydrogels, chitosan nanoparticles, chitosan multifunctional derivatives, 5-fluorouracil, ocular delivery

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]