Back to Journals » ChronoPhysiology and Therapy » Volume 4

The potential of light therapy in Parkinson's disease

Authors Johnstone D, Coleman K, Moro C, Torres N, Eells J, Baker GE, Ashkan K, Stone J, Benabid A, Mitrofanis J

Received 7 November 2013

Accepted for publication 10 December 2013

Published 18 February 2014 Volume 2014:4 Pages 1—14

DOI https://doi.org/10.2147/CPT.S57180

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Daniel M Johnstone,1 Kristina Coleman,2 Cécile Moro,3 Napoleon Torres,3 Janis T Eells,4 Gary E Baker,5,† Keyoumars Ashkan,6 Jonathan Stone,1 Alim-Louis Benabid,3 John Mitrofanis2

1
Department of Physiology and Bosch Institute, 2Department of Anatomy and Histology, University of Sydney, Sydney, NSW, Australia; 3Clinatec LETI-DTBS, CEA Grenoble, France; 4Department of Biomedical Science, University of Wisconsin, Madison, WI, USA; 5Department of Optometry and Visual Science, City University, 6Department of Neurosurgery, King’s College Hospital, London, UK

†Gary E Baker passed away on 15 November 2011.

Abstract: Parkinson’s disease is a movement disorder with cardinal signs of resting tremor, akinesia, and rigidity. These manifest after a progressive death of many dopaminergic neurons of the midbrain. Unfortunately, the progression of this neuronal death has proved difficult to slow and impossible to reverse despite an intense search for the specific causes and for treatments that address the causes. There is a corresponding need to develop approaches that regulate the self-repair mechanisms of neurons, independent of the specific causes of the damage that leads to their death. Red to infrared light therapy (λ=600–1,070 nm) is emerging as an effective, repair-oriented therapy that is capable of stabilizing dying neurons. Initially a space-age anecdote, light therapy has become a treatment for tissue stressed by the known causes of age-related diseases: hypoxia, toxic environments, and mitochondrial dysfunction. Here we focus on several issues relating to the use of light therapy for Parkinson's disease: 1) What is the evidence that it is neuroprotective? We consider the basic science and clinical evidence; 2) What are the mechanisms of neuroprotection? We suggest a primary mechanism acting directly on the neuron’s mitochondria (direct effect) as well as a secondary, supportive mechanism acting indirectly through systemic systems (indirect effect); 3) Could this be effective in humans? We discuss the pros and cons of this treatment in humans, including the development of a new surgical method of delivery; and 4) What are the advantages of using light therapy? We explore the features that make this therapy a promising potential treatment. In summary, early evidence indicates that light regulates specific neuronal functions and is neuroprotective in animal models of Parkinson’s disease. The stage is set for detailed and rigorous explorations into its use on Parkinson’s disease patients, in particular, whether light slows the disease progression rather than simply mitigating signs.

Keywords: infrared, near infrared, neuroprotection, photobiomodulation, substantia nigra

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]