Back to Journals » International Journal of Nanomedicine » Volume 8 » Issue 1

The migration of synthetic magnetic nanoparticle labeled dendritic cells into lymph nodes with optical imaging

Authors Su H, Mou Y, An Y, Han W, Huang X, Xia G, Ni Y, Zhang Y, Ma J, Hu Q

Received 27 July 2013

Accepted for publication 21 August 2013

Published 7 October 2013 Volume 2013:8(1) Pages 3737—3744


Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 2

Hang Su,1,* Yongbin Mou,1,* Yanli An,2 Wei Han,1 Xiaofeng Huang,1 Guohua Xia,3 Yanhong Ni,1 Yu Zhang,4 Jianmin Ma,1 Qingang Hu1,5

1Center Laboratory of Stomatology, Stomatological Hospital Affiliated Medical School, Nanjing University, Nanjing, People's Republic of China; 2Jiangsu Key Lab of Molecular and Function Imaging, Department of Radiology; 3Department of Hematology, Zhongda Hospital, Medical School, 4State Key Laboratory of Molecule and Bimolecular Electronics, Jiangsu Provincial Laboratory for Biomaterials and Devices; Southeast University, Nanjing, People's Republic of China; 5Leeds Dental Institute, Faculty of Medicine and health, University of Leeds, Leeds, United Kingdom

*These authors contributed equally to this work

Background: The successful biotherapy of carcinoma with dendritic cell (DC) vaccines pivotally relies on DCs’ migratory capability into lymph tissues and activation of T cells. Accurate imaging and evaluation of DC migration in vivo have great significance during antitumor treatment with DC vaccine. We herein examined the behavior of DCs influenced by synthetic superparamagnetic iron oxide (SPIO) nanoparticle labeling.
Methods: γ-Fe2O3 nanoparticles were prepared and DCs, which were induced from bone marrow monocytes of enhanced green fluorescent protein (EGFP) transgenic mice, were labeled. The endocytosis of the SPIO, surface molecules, cell apoptosis and fluorescence intensity of EGFP-DCs were displayed by Prussian blue staining and flow cytometry (FCM), respectively. After EGFP-DCs, labeled with SPIO, were injected into footpads (n = 5) for 24 hours, the mice were examined in vivo by optical imaging (OPI). Meanwhile, confocal imaging and FCM were applied, respectively, to detect the migration of labeled DCs into draining lymph nodes.
Results: Nearly 100% of cells were labeled by the SPIO, in which the intracellular blue color gradually deepened and the iron contents rose with the increase of labeling iron concentrations. In addition, cell apoptosis and the surface molecules on DCs were at similar levels after SPIO labeling. After confirming that the fluorescence intensity of EGFP on DCs was not influenced by SPIO, the homing ability of EGFP-DCs labeled with SPIO displayed that the fluorescence intensity and the ratios of EGFP-DCs in draining lymph nodes were gradually decreased with the increase of labeling iron concentrations.
Conclusion: The synthetic SPIO nanoparticles possess perfect labeling ability and biocompatibility. Moreover, DCs labeled with a low dose of SPIO showed stronger migratory capability in vivo.

Keywords: optical imaging, dendritic cell, superparamagnetic iron oxide, cell tracking

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]


Other article by this author:

Therapeutic antitumor efficacy of tumor-derived autophagosome (DRibble) vaccine on head and neck cancer

Su H, Luo Q, Xie H, Huang XF, Ni YH, Mou YB, Hu QG

International Journal of Nanomedicine 2015, 10:1921-1930

Published Date: 10 March 2015

Readers of this article also read:

NanoDisk containing super aggregated amphotericin B: a high therapeutic index antifungal formulation with enhanced potency

Burgess BL, He Y, Baker MM, Luo B, Carroll SF, Forte TM, Oda MN

International Journal of Nanomedicine 2013, 8:4733-4743

Published Date: 12 December 2013

Tumor targeting and imaging with dual-peptide conjugated multifunctional liposomal nanoparticles

Rangger C, Helbok A, Sosabowski J, Kremser C, Koehler G, Prassl R, Andreae F, Virgolini IJ, von Guggenberg E, Decristoforo C

International Journal of Nanomedicine 2013, 8:4659-4671

Published Date: 5 December 2013

Predictive modeling of nanomaterial exposure effects in biological systems

Liu X, Tang K, Harper S, Harper B, Steevens JA, Xu R

International Journal of Nanomedicine 2013, 8:31-43

Published Date: 16 September 2013

Zirconium, calcium, and strontium contents in magnesium based biodegradable alloys modulate the efficiency of implant-induced osseointegration

Mushahary D, Sravanthi R, Li Y, Kumar MJ, Harishankar N, Hodgson PD, Wen C, Pande G

International Journal of Nanomedicine 2013, 8:2887-2902

Published Date: 9 August 2013

Barium titanate core – gold shell nanoparticles for hyperthermia treatments

FarrokhTakin E, Ciofani G, Puleo GL, de Vito G, Filippeschi C, Mazzolai B, Piazza V, Mattoli V

International Journal of Nanomedicine 2013, 8:2319-2331

Published Date: 28 June 2013

Supramolecular nanoparticles generated by the self-assembly of polyrotaxanes for antitumor drug delivery

Liu R, Lai YS, He B, Li Y, Wang G, Chang S, Gu Z

International Journal of Nanomedicine 2012, 7:5249-5258

Published Date: 5 October 2012

Biofunctionalization of a titanium surface with a nano-sawtooth structure regulates the behavior of rat bone marrow mesenchymal stem cells

Zhang WJ, Li ZH, Liu Y, Ye DX, Li JH, Xu LY, Wei B, Zhang XL, Liu XY, Jiang XQ

International Journal of Nanomedicine 2012, 7:4459-4472

Published Date: 13 August 2012

Multifactorial determinants that govern nanoparticle uptake by human endothelial cells under flow

Samuel SP, Jain N, O'Dowd F, Paul T, Kashanin D, Gerard VA, Gun'ko YK, Prina-Mello A, Volkov Y

International Journal of Nanomedicine 2012, 7:2943-2956

Published Date: 14 June 2012

Simultaneous, noninvasive, and transdermal extraction of urea and homocysteine by reverse iontophoresis

Congo Tak-Shing Ching, Tzong-Ru Chou, Tai-Ping Sun, et al

International Journal of Nanomedicine 2011, 6:417-423

Published Date: 20 February 2011