Back to Journals » International Journal of Nanomedicine » Volume 10 » Special Issue on diverse applications in Nano-Theranostics

The characteristic AgcoreAushell nanoparticles as SERS substrates in detecting dopamine molecules at various pH ranges

Authors Bu Y, Lee S

Received 10 May 2015

Accepted for publication 20 June 2015

Published 25 August 2015 Volume 2015:10(Special Issue on diverse applications in Nano-Theranostics) Pages 47—54


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Prof. Dr. Thomas J. Webster

Yanru Bu,1 Sang-Wha Lee2

1Department of Chemical Engineering, Faculty of Engineering, Monash University, Melbourne, VIC, Australia; 2Department of Chemical and Biochemical Engineering, Gachon University, Seongnam-si, Gyeonggi-do, Republic of Korea

Abstract: AgcoreAushell nanoparticles (NPs) are a promising surface-enhanced Raman scattering (SERS) substrate, which can offer a high enhancement factor through the combined effect of the high SERS activity of the Ag core and the biocompatibility of the Au shell. In this study, AgcoreAushell NPs were examined as SERS substrates for the sensitive detection of dopamine (DA) molecules in an aqueous solution. The SERS activity of the AgcoreAushell NPs was strongly dependent on the pH of the solution. When the pH of the solution was acidic (pH <5) or basic (pH >9), the AgcoreAushell NPs exhibited negligible SERS activity toward the DA molecules, due to the weakened interactions (or repulsive forces) between the DA molecules and the core–shell NPs. On the other hand, the AgcoreAushell NPs exhibited a high SERS activity in the intermediate pH ranges (pH 7–9), due to the molecular bridging effect of DA molecules, which allows probe molecules to be located at the interstitial junctions (so-called hot spots) between the core–shell NPs. The results of this study highlight the importance of probe-induced clustering of core–shell NPs in the SERS measurements at physiological pH.

Keywords: dopamine, AgcoreAushell NPs, solution pH, SERS activity

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]