Back to Journals » International Journal of Nanomedicine » Volume 10 » Issue 1

Targeting and treatment of glioblastomas with human mesenchymal stem cells carrying ferrociphenol lipid nanocapsules

Authors Clavreul A, Montagu A, Laine A, Tetaud C, Lautram N, Franconi F, Passirani C, Vessieres A, Montero-Menei C, Menei P

Received 10 June 2014

Accepted for publication 26 July 2014

Published 12 February 2015 Volume 2015:10(1) Pages 1259—1271

DOI https://doi.org/10.2147/IJN.S69175

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 5

Editor who approved publication: Prof. Dr. Thomas J Webster


Anne Clavreul,1 Angélique Montagu,2 Anne-Laure Lainé,2 Clément Tétaud,2 Nolwenn Lautram,2 Florence Franconi,3 Catherine Passirani,2 Anne Vessières,4 Claudia N Montero-Menei,2 Philippe Menei1

1Département de Neurochirurgie, Centre Hospitalier Universitaire, Angers, France; 2INSERM UMR-S 1066, Université d’Angers, LUNAM Université, Angers, France; 3CIFAB-PRIMEX, Université d’Angers, LUNAM Université, Angers, France; 4CNRS-UMR 7223, ENSCP, Paris, France

Abstract: Recently developed drug delivery nanosystems, such as lipid nanocapsules (LNCs), hold great promise for the treatment of glioblastomas (GBs). In this study, we used a subpopulation of human mesenchymal stem cells, “marrow-isolated adult multilineage inducible” (MIAMI) cells, which have endogenous tumor-homing activity, to deliver LNCs containing an organometallic complex (ferrociphenol or Fc-diOH), in the orthotopic U87MG GB model. We determined the optimal dose of Fc-diOH-LNCs that can be carried by MIAMI cells and compared the efficacy of Fc-diOH-LNC-loaded MIAMI cells with that of the free-standing Fc-diOH-LNC system. We showed that MIAMI cells entrapped an optimal dose of about 20 pg Fc-diOH per cell, with no effect on cell viability or migration capacity. The survival of U87MG-bearing mice was longer after the intratumoral injection of Fc-diOH-LNC-loaded MIAMI cells than after the injection of Fc-diOH-LNCs alone. The greater effect of the Fc-diOH-LNC-loaded MIAMI cells may be accounted for by their peritumoral distribution and a longer residence time of the drug within the tumor. These results confirm the potential of combinations of stem cell therapy and nanotechnology to improve the local tissue distribution of anticancer drugs in GB.

Keywords: glioblastoma, mesenchymal stem cells, nanoparticle, drug delivery, targeting
 

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]