Back to Journals » International Journal of Nanomedicine » Volume 11

Systemic distribution of single-walled carbon nanotubes in a novel model: alteration of biochemical parameters, metabolic functions, liver accumulation, and inflammation in vivo

Authors Principi E, Girardello R, Bruno A, Manni I, Gini E, Pagani A, Grimaldi A, Ivaldi F, Congiu T, De Stefano D, Piaggio G, de Eguileor M, Noonan DM, Albini A

Received 6 April 2016

Accepted for publication 24 May 2016

Published 1 September 2016 Volume 2016:11 Pages 4299—4316

DOI https://doi.org/10.2147/IJN.S109950

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Govarthanan Muthusamy

Peer reviewer comments 2

Editor who approved publication: Dr Thomas J Webster


Video presented by Adriana Albini and Elisa Principi

Views: 82

Elisa Principi,1,* Rossana Girardello,2,* Antonino Bruno,1,* Isabella Manni,3 Elisabetta Gini,2 Arianna Pagani,1 Annalisa Grimaldi,2 Federico Ivaldi,4 Terenzio Congiu,5 Daniela De Stefano,1 Giulia Piaggio,3 Magda de Eguileor,2 Douglas M Noonan,1,2 Adriana Albini1

1Vascular Biology and Angiogenesis, Scientific and Technology Pole, IRCCS MultiMedica, Milano, 2Department of Biotechnology and Life Sciences, University of Insubria, Varese, 3Department of Research, Advanced Diagnosis and Innovation, Regina Elena National Cancer Institute, Rome, 4Department of Neuroscience, Ophthalmology and Genetics, University of Genoa, Genoa, 5Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy

*These authors contributed equally to this work

Abstract: The increasing use of carbon nanotubes (CNTs) in several industrial applications raises concerns on their potential toxicity due to factors such as tissue penetrance, small dimensions, and biopersistence. Using an in vivo model for CNT environmental exposure, mimicking CNT exposition at the workplace, we previously found that CNTs rapidly enter and disseminate in the organism, initially accumulating in the lungs and brain and later reaching the liver and kidneys via the bloodstream in CD1 mice. Here, we monitored and traced the accumulation of single-walled CNTs (SWCNTs), administered systemically in mice, in different organs and the subsequent biological responses. Using the novel in vivo model, MITO-Luc bioluminescence reporter mice, we found that SWCNTs induce systemic cell proliferation, indicating a dynamic response of cells of both bone marrow and the immune system. We then examined metabolic (water/food consumption and dejections), functional (serum enzymes), and morphological (organs and tissues) alterations in CD1 mice treated with SWCNTs, using metabolic cages, performing serum analyses, and applying histological, immunohistochemical, and ultrastructural (transmission electron microscopy) methods. We observed a transient accumulation of SWCNTs in the lungs, spleen, and kidneys of CD1 mice exposed to SWCNTs. A dose- and time-dependent accumulation was found in the liver, associated with increases in levels of aspartate aminotransferase, alanine aminotransferase and bilirubinemia, which are metabolic markers associated with liver damage. Our data suggest that hepatic accumulation of SWCNTs associated with liver damage results in an M1 macrophage-driven inflammation.

Keywords: single-walled carbon nanotubes, nanotoxicity, metabolism, hepatic function, inflammation, Kupffer cells, mouse models

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]