Back to Journals » International Journal of Nanomedicine » Volume 15

Synthesis of Silver Nanoparticles Using a Novel Cyanobacteria Desertifilum sp. extract: Their Antibacterial and Cytotoxicity Effects

Authors Hamida RS, Abdelmeguid NE, Ali MA, Bin-Meferij MM, Khalil MI

Received 14 November 2019

Accepted for publication 21 December 2019

Published 8 January 2020 Volume 2020:15 Pages 49—63

DOI https://doi.org/10.2147/IJN.S238575

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Prof. Dr. Thomas J. Webster


Supplementary video for ID 238575

Views: 439

Reham Samir Hamida, 1 Nabila Elsayed Abdelmeguid, 1 Mohamed Abdelaal Ali, 2 Mashael Mohammed Bin-Meferij, 3 Mahmoud Ibrahim Khalil 4

1Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt; 2Biotechnology Unit, Department of Plant Production, College of Food and Agriculture Science, King Saud University, Riyadh, Saudi Arabia; 3Department of Biology, College of Science Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia; 4Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon

Correspondence: Mashael Mohammed Bin-Meferij; Mahmoud Ibrahim Khalil Tel +966 554477376; +961 81982014
Email mmbinmufayrij@pnu.edu.sa; m.khalil@bau.edu.lb

Background: The emergence of multi drug-resistant (MDR) bacterial infections and cancer has necessitated the development and discovery of alternative eco-safe antibacterial and anticancer agents. Biogenic fabrication of metallic nanoparticles is an emerging discipline for production of nanoproducts that exert potent anticancer and antibacterial activity, and do not suffer from the limitations inherent in physiochemical synthesis methods.
Methodology: In this study, we isolated, purified, and characterized a novel cyanobacteria extract (Desertifilum IPPAS B-1220) to utilize in biofabrication of silver nanoparticles (D-SNPs). D-SNPs were produced by adding Desertifilum extract to silver nitrate solution under controlled conditions. Biofabrication of D-SNPs was confirmed using a UV-Vis spectrophotometer. The resultant D-SNPs were characterized using XRD, FTIR, SEM, and TEM. The toxicity of D-SNPs against five pathogenic bacteria and three cancer cell lines (MCF-7, HepG2, and Caco-2) was evaluated.
Results: Formation of D-SNPs was indicated by a color change from pale yellow to dark brown. The peak of the surface plasmon resonance of the D-SNPs was at 421 nm. The XRD detected the crystallinity of D-SNPs. FTIR showed that polysaccharides and proteins may have contributed to the biofabrication of D-SNPs. Under SEM and TEM, the D-SNPs were spherical with diameter ranges from 4.5 to 26 nm. The D-SNPs significantly suppressed the growth of five pathogenic bacteria, and exerted cytotoxic effects against MCF-7, HepG2, and Caco-2 cancer cells with IC 50 values of 58, 32, and 90 μg/mL, respectively.
Conclusion: These findings showed for the first time the potentiality of novel cyanobacteria strain Desertifilum IPPAS B-1220 to fabricate small SNPs that acted as potent anticancer and antibacterial material against different cancer cell lines and pathogenic bacterial strains. These findings encourage the researchers to focus on cyanobacteria in general and especially Desertifilum sp. IPPAS B-1220 for synthesizing different NPs that opening the window for new applications.

Keywords: nanotechnology, eco-friendly, D-SNPs, physicochemical, cytotoxic activity

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]