Back to Journals » Nanotechnology, Science and Applications » Volume 5

Synthesis, characterization, and in vitro evaluation of novel polymer-coated magnetic nanoparticles for controlled delivery of doxorubicin

Authors Akbarzadeh A, Zarghami , Mikaeili H, Asgari D, Goganian AM, Khiabani HK, Samiei M, Davaran S

Received 17 July 2011

Accepted for publication 12 September 2011

Published 7 February 2012 Volume 2012:5 Pages 13—25


Review by Single anonymous peer review

Peer reviewer comments 3

This paper has been retracted

Abolfazl Akbarzadeh1, Nosratollah Zarghami2, Haleh Mikaeili3, Davoud Asgari4, Amir Mohammad Goganian5, Hanie Khaksar Khiabani5, Mohammad Samiei6, Soodabeh Davaran3
1Department of Medicinal Chemistry, Tabriz University of Medical Sciences, 2Department of Clinical Biochemistry and Laboratory Medicine, Division of Medical Biotechnology, Faculty of Medicine, Tabriz University of Medical Sciences, 3Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, 4Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, 5Department of Organic Chemistry, Faculty of Chemistry, University of Tabriz, 6Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran

Abstract: Poly (N-isopropylacrylamide-methyl methacrylic acid, PNIPAAm-MAA)-grafted magnetic nanoparticles were synthesized using silane-coated magnetic nanoparticles as a template for radical polymerization of N-isopropylacrylamide and methacrylic acid. Properties of these nanoparticles, such as size, drug-loading efficiency, and drug release kinetics, were evaluated in vitro for targeted and controlled drug delivery. The resulting nanoparticles had a diameter of 100 nm and a doxorubicin-loading efficiency of 75%, significantly higher doxorubicin release at 40°C compared with 37°C, and pH 5.8 compared with pH 7.4, demonstrating their temperature and pH sensitivity, respectively. In addition, the particles were characterized by X-ray powder diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and vibrating sample magnetometry. In vitro cytotoxicity testing showed that the PNIPAAm-MAA-coated magnetic nanoparticles had no cytotoxicity and were biocompatible, indicating their potential for biomedical application.

Keywords: magnetic nanoparticles, drug loading, doxorubicin release, biocompatibility

Creative Commons License © 2012 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.