Back to Browse Journals » Pharmacogenomics and Personalized Medicine » Volume 4

Sulfation of fulvestrant by human liver cytosols and recombinant SULT1A1 and SULT1E1

Authors Edavana VK, Yu X, Dhakal IB, Williams S, Ning B, Cook IT, Caldwell D, Falany CN, Kadlubar S

Published 17 November 2011 Volume 2011:4 Pages 137—145

DOI http://dx.doi.org/10.2147/PGPM.S25418

Review by Single-blind

Peer reviewer comments 2

Vineetha Koroth Edavana1, Xinfeng Yu1, Ishwori B Dhakal1, Suzanne Williams1, Baitang Ning2, Ian T Cook3, David Caldwell1, Charles N Falany3, Susan Kadlubar1
1
Division of Medical Genetics, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA; 2Division of Personalized Nutrition and Medicine, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, USA; 3Department of Pharmacology, University of Alabama, Birmingham, AL, USA

Abstract: Fulvestrant (Faslodex™) is a pure antiestrogen that is approved to treat hormone receptor-positive metastatic breast cancer in postmenopausal women. Previous studies have demonstrated that fulvestrant metabolism in humans involves cytochromes P450 and UDP-glucuronosyltransferases (UGTs). To date, fulvestrant sulfation has not been characterized. This study examined fulvestrant sulfation with nine recombinant sulfotransferases and found that only SULT1A1 and SULT1E1 displayed catalytic activity toward this substrate, with Km of 4.2 ± 0.99 and 0.2 ± 0.16 µM, respectively. In vitro assays of 104 human liver cytosols revealed marked individual variability that was highly correlated with β-naphthol sulfation (SULT1A1 diagnostic substrate; r = 0.98, P < 0.0001), but not with 17ß-estradiol sulfation (SULT1E1 diagnostic substrate; r = 0.16, P = 0.10). Fulvestrant sulfation was correlated with both SULT1A1*1/2 genotype (P value = 0.023) and copy number (P < 0.0001). These studies suggest that factors influencing SULT1A1/1E1 tissue expression and/or enzymatic activity could influence the efficacy of fulvestrant therapy.

Keywords: fulvestrant, sulfotransferase, genotype, copy number

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF] View Full Text [HTML] 

 

Other articles by this author:

CYP19A1 single nucleotide polymorphism associations with CYP19A1, NFκB1, and IL6 gene expression in human normal colon and normal liver samples

Penney RB, Lundgreen A, Yao-Borengasser A, Edavana VK, Williams S, Dhakal I, Wolff RK, Kadlubar S, Slattery ML

Pharmacogenomics and Personalized Medicine 2014, 7:163-171

Published Date: 14 July 2014

Lack of correlation between in silico projection of function and quantitative real-time PCR-determined gene expression levels in colon tissue

Penney RB, Lundgreen A, Yao-Borengasser A, Koroth-Edavana V, Williams S, Wolff R, Slattery ML, Kadlubar S

Pharmacogenomics and Personalized Medicine 2013, 6:99-103

Published Date: 9 September 2013

Copy number variation in sulfotransferase isoform 1A1 (SULT1A1) is significantly associated with enzymatic activity in Japanese subjects

Yu X, Kubota T, Dhakal I, Hasegawa S, Williams S, Ozawa S, Kadlubar S

Pharmacogenomics and Personalized Medicine 2013, 6:19-24

Published Date: 6 March 2013

GSTM1 copy number and promoter haplotype as predictors for risk of recurrence and/or second primary tumor in patients with head and neck cancer

Zhang X, Huang M, Wu X, Kadlubar S, Lin J, Yu X, Fan C, Ning B, Kadlubar FF

Pharmacogenomics and Personalized Medicine 2013, 6:9-17

Published Date: 1 March 2013

Readers of this article also read:

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

A new recombinant factor VIII: from genetics to clinical use

Santagostino E

Drug Design, Development and Therapy 2014, 8:2507-2515

Published Date: 12 December 2014

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Particle size reduction to the nanometer range: a promising approach to improve buccal absorption of poorly water-soluble drugs

Rao S, Song Y, Peddie F, Evans AM

International Journal of Nanomedicine 2011, 6:1245-1251

Published Date: 20 June 2011

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010