Back to Journals » International Journal of Nanomedicine » Volume 15

Stimulus Responsive Ocular Gentamycin-Ferrying Chitosan Nanoparticles Hydrogel: Formulation Optimization, Ocular Safety and Antibacterial Assessment

Authors Alruwaili NK, Zafar A, Imam SS, Alharbi KS, Alotaibi NH, Alshehri S, Alhakamy NA, Alzarea AI, Afzal M, Elmowafy M

Received 22 March 2020

Accepted for publication 8 May 2020

Published 30 June 2020 Volume 2020:15 Pages 4717—4737

DOI https://doi.org/10.2147/IJN.S254763

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 5

Editor who approved publication: Prof. Dr. Thomas Webster


Nabil K Alruwaili,1 Ameeduzzafar Zafar,1 Syed Sarim Imam,2 Khalid Saad Alharbi,3 Nasser Hadal Alotaibi,4 Sultan Alshehri,2,5 Nabil A Alhakamy,6 Abdulaziz I Alzarea,1 Muhammad Afzal,3 Mohammed Elmowafy1,7

1Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Kingdom of Saudi Arabia; 2Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Kingdom of Saudi Arabia; 3Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Kingdom of Saudi Arabia; 4Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka, Al-Jouf, Kingdom of Saudi Arabia; 5College of Pharmacy, Almaarefa University, Riyadh, Kingdom of Saudi Arabia; 6Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia; 7Department of Pharmaceutics and Ind. Pharmacy, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt

Correspondence: Ameeduzzafar Zafar Email zzafarpharmacian@gmail.com

Purpose: The present study was designed to study the gentamycin (GTM)-loaded stimulus-responsive chitosan nanoparticles to treat bacterial conjunctivitis.
Methods: GTM-loaded chitosan nanoparticles (GTM-CHNPs) were prepared by ionotropic gelation method and further optimized by 3-factor and 3-level Box–Behnken design. Chitosan (A), sodium tripolyphosphate (B), and stirring speed (C) were selected as independent variables. Their effects were observed on particle size (PS as Y1), entrapment efficiency (EE as Y2), and loading capacity (LC as Y3).
Results: The optimized formulation showed the particle size, entrapment efficiency, and loading capacity of 135.2± 3.24 nm, 60.18± 1.65%, and 34.19± 1.17%, respectively. The optimized gentamycin-loaded chitosan nanoparticle (GTM-CHNPopt) was further converted to the stimulus-responsive sol-gel system (using pH-sensitive carbopol 974P). GTM-CHNPopt sol-gel (NSG5) exhibited good gelling strength and sustained release (58.99± 1.28% in 12h). The corneal hydration and histopathology of excised goat cornea revealed safe to the cornea. It also exhibited significant (p< 0.05) higher ZOI than the marketed eye drop.
Conclusion: The finding suggests that GTM-CHNP-based sol-gel is suitable for ocular delivery to enhance the corneal contact time and improved patient compliance.

Keywords: chitosan, nanoparticles, gentamycin, histopathology, antimicrobial assessment, HET CAM test

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]