Back to Journals » International Journal of Chronic Obstructive Pulmonary Disease » Volume 14
Sputum Streptococcus pneumoniae is reduced in COPD following treatment with benralizumab
Authors George L, Wright A, Mistry V, Sutcliffe A, Chachi L, Haldar K, Ramsheh MY, Richardson M, van der Merwe R, Martin U, Newbold P, Brightling CE
Received 14 December 2018
Accepted for publication 29 March 2019
Published 5 June 2019 Volume 2019:14 Pages 1177—1185
DOI https://doi.org/10.2147/COPD.S198302
Checked for plagiarism Yes
Review by Single anonymous peer review
Peer reviewer comments 3
Editor who approved publication: Dr Richard Russell
Leena George,1 Adam Wright,1 Vijay Mistry,1 Amanda Sutcliffe,1 Latifa Chachi,1 Koirobi Haldar,1 Mohammadali Yavari Ramsheh,1 Matthew Richardson,1 René van der Merwe,2 Ubaldo Martin,3 Paul Newbold,3 Christopher E Brightling1
1Department of Respiratory Sciences, Institute for Lung Health, National Institute for Health Research Biomedical Research Centre, University of Leicester, Leicester, UK; 2Clinical Respiratory Management, MedImmune Ltd., Cambridge, UK; 3Global Medical Affairs, AstraZeneca, Gaithersburg, MD, USA
Abstract: We hypothesized whether the reduction in eosinophilic airway inflammation in patients with chronic obstructive pulmonary disease (COPD) following treatment with benralizumab, a humanized, afucosylated, monoclonal antibody that binds to interleukin-5 receptor α, increases the airway bacterial load. Analysis of sputum samples of COPD patients participating in a Phase II trial of benralizumab indicated that sputum 16S rDNA load and Streptococcus pneumoniae were reduced following treatment with benralizumab. However, in vitro, eosinophils did not affect the killing of the common airway pathogens S. pneumoniae or Haemophilus influenzae. Thus, benralizumab may have an indirect effect upon airway bacterial load.
Keywords: COPD, benralizumab, IL-5, bacterial load, S. pneumoniae, H. influenzae
This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License.
By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.