Back to Journals » International Journal of Nanomedicine » Volume 13

Short duration cancer treatment: inspired by a fast bio-resorbable smart nano-fiber device containing NIR lethal polydopamine nanospheres for effective chemo–photothermal cancer therapy

Authors Obiweluozor FO, Emechebe GA, Tiwari AP, Kim JY, Park CH, Kim CS

Received 20 July 2018

Accepted for publication 4 September 2018

Published 12 October 2018 Volume 2018:13 Pages 6375—6390


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Editor who approved publication: Dr Thomas Webster

Video abstract presented by Francis O Obiweluozor.

Views: 164

Francis O Obiweluozor,1,2,* Gladys A Emechebe,3,* Arjun Prasad Tiwari,3 Ju Yeon Kim,1 Chan Hee Park,1,3 Cheol Sang Kim1,3

1Division of Mechanical Design Engineering, Chonbuk National University, Jeonju City, Republic of Korea; 2Department of Chemical Engineering, Enugu State University of Science and Technology, Enugu State, Nigeria; 3Department of Bionanosystem Engineering Graduate School, Chonbuk National University, Jeonju City, Republic of Korea

*These authors contributed equally to this work

Background: The objective of this study was to evaluate the efficacy of a combination of Photothermal therapy (PTT) and chemotherapy in a single nano-fiber platform containing lethal polydopamine nano-pheres (PD NPs) for annihilation of CT 26 cancer cells.
Method: Polydioxanone (PDO) nano-fiber containing PD and bortezomib (BTZ) was fabricated via electrospinning method. The content of BTZ and PD after optimization was 7% and 2.5% respectively with respect to PDO weight. PD NPs have absorption band in near-infrared (NIR) with resultant rapid heating capable of inducing cancer cell death. The samples was divided into three groups – PDO, PDO+PD, and PDO+PD-BTZ for analysis.
Results: In combined treatment, PDO nano-fiber alone could not inhibit cancer cell growth as it neither contain PD or BTZ. However, PDO+PD fiber showed a cell viability of approximately 20% after 72 hr of treatment indicating minimal killing via hyperthermia. In the case of PDO composite fiber containing BTZ, the effect of NIR irradiation reduced the viability of cancer cells down to around 5% after 72 h showing the efficiency of combination therapy on cancer cells elimination. However, due to higher photothermal conversion that may negatively affect normal cells above 46°C, we have employed 1 s “OFF” and 2 s “ON” after initial 9 s continuous irradiation to maintain the temperature between 42 and 46°C over 3 mins of treatment using 2 W/cm2; 808 nm laser which resulted to similar cell death.
Conclusion: In this study, combination of PTT and chemotherapy treatment on CT 26 colon cancer cells within 3 min resulted in effective cell death in contrast to single treatment of either PTT and chemotherapy alone. Our results suggest that this nano-fiber device with efficient heating and remote control drug delivery system can be useful and convenient in the future clinical application for localized cancer therapy.

Keywords: electrospinning, polydopamine nanospheres, chemotherapy, photothermal therapy, electrospun nano-fiber, Bortezomib, local treatment, combination cancer therapy

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]