Back to Journals » Infection and Drug Resistance » Volume 13

Secular Seasonality and Trend Forecasting of Tuberculosis Incidence Rate in China Using the Advanced Error-Trend-Seasonal Framework

Authors Wang Y, Xu C, Ren J, Wu W, Zhao X, Chao L, Liang W, Yao S

Received 12 November 2019

Accepted for publication 25 February 2020

Published 5 March 2020 Volume 2020:13 Pages 733—747

DOI https://doi.org/10.2147/IDR.S238225

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 4

Editor who approved publication: Professor Suresh Antony


Yongbin Wang,1,* Chunjie Xu,2,* Jingchao Ren,1 Weidong Wu,1 Xiangmei Zhao,1 Ling Chao,1 Wenjuan Liang,1 Sanqiao Yao1

1Department of Epidemiology and Health Statistics, School of Public Health, Xinxiang Medical University, Xinxiang, Henan, People’s Republic of China; 2Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, People’s Republic of China

*These authors contributed equally to this work

Correspondence: Yongbin Wang
Department of Epidemiology and Health Statistics, School of Public Health, Xinxiang Medical University, Xinxiang, Henan 453000, People’s Republic of China
Tel +86 373 383 1646
Email wybwho@163.com

Objective: Tuberculosis (TB) is a major public health problem in China, and contriving a long-term forecast is a useful aid for better launching prevention initiatives. Regrettably, such a forecasting method with robust and accurate performance is still lacking. Here, we aim to investigate its potential of the error-trend-seasonal (ETS) framework through a series of comparative experiments to analyze and forecast its secular epidemic seasonality and trends of TB incidence in China.
Methods: We collected the TB incidence data from January 1997 to August 2019, and then partitioning the data into eight different training and testing subsamples. Thereafter, we constructed the ETS and seasonal autoregressive integrated moving average (SARIMA) models based on the training subsamples, and multiple performance indices including the mean absolute deviation, mean absolute percentage error, root-mean-squared error, and mean error rate were adopted to assess their simulation and projection effects.
Results: In the light of the above performance measures, the ETS models provided a pronounced improvement for the long-term seasonality and trend forecasting in TB incidence rate over the SARIMA models, be it in various training or testing subsets apart from the 48-step ahead forecasting. The descriptive results to the data revealed that TB incidence showed notable seasonal characteristics with predominant peaks of spring and early summer and began to be plunging at on average 3.722% per year since 2008. However, this rate reduced to 2.613% per year since 2015 and furthermore such a trend would be predicted to continue in years ahead.
Conclusion: The ETS framework has the ability to conduct long-term forecasting for TB incidence, which may be beneficial for the long-term planning of the TB prevention and control. Additionally, considering the predicted dropping rate of TB morbidity, more particular strategies should be formulated to dramatically accelerate progress towards the goals of the End TB Strategy.

Keywords: tuberculosis, incidence, SARIMA, ETS, models, forecasting

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]