Back to Journals » Clinical Ophthalmology » Volume 10

Relationship between visual field progression and baseline refraction in primary open-angle glaucoma

Authors Naito T, Yoshikawa K, Mizoue S, Nanno M, Kimura T, Suzumura H, Umeda Y, Shiraga F

Received 2 April 2016

Accepted for publication 10 May 2016

Published 28 July 2016 Volume 2016:10 Pages 1397—1403


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Dr Scott Fraser

Tomoko Naito,1 Keiji Yoshikawa,2 Shiro Mizoue,3 Mami Nanno,4 Tairo Kimura,5 Hirotaka Suzumura,6 Yuzo Umeda,7 Fumio Shiraga1

1Department of Ophthalmology, Okayama University Graduate School of Medicine, Okayama, Japan; 2Yoshikawa Eye Clinic, Tokyo, Japan; 3Department of Ophthalmology, Ehime University Graduate School of Medicine, Ehime, Japan; 4Kagurazaka Minamino Eye Clinic, 5Ueno Eye Clinic, 6Suzumura Eye Clinic, Tokyo, Japan; 7Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Okayama, Japan

Purpose: To analyze the relationship between visual field (VF) progression and baseline refraction in Japanese patients with primary open-angle glaucoma (POAG) including normal-tension glaucoma.
Patients and methods: In this retrospective study, the subjects were patients with POAG who had undergone VF tests at least ten times with a Humphrey Field Analyzer (Swedish interactive thresholding algorithm standard, Central 30-2 program). VF progression was defined as a significantly negative value of mean deviation (MD) slope at the final VF test. Multivariate logistic regression models were applied to detect an association between MD slope deterioration and baseline refraction.
Results: A total of 156 eyes of 156 patients were included in this analysis. Significant deterioration of MD slope was observed in 70 eyes of 70 patients (44.9%), whereas no significant deterioration was evident in 86 eyes of 86 patients (55.1%). The eyes with VF progression had significantly higher baseline refraction compared to those without apparent VF progression (-1.9±3.8 diopter [D] vs -3.5±3.4 D, P=0.0048) (mean ± standard deviation). When subject eyes were classified into four groups by the level of baseline refraction applying spherical equivalent (SE): no myopia (SE > -1D), mild myopia (-1D ≥ SE > -3D), moderate myopia (-3D ≥ SE > -6D), and severe myopia (-6D ≥ SE), the Cochran–Armitage trend analysis showed a decreasing trend in the proportion of MD slope deterioration with increasing severity of myopia (P=0.0002). The multivariate analysis revealed that baseline refraction (P=0.0108, odds ratio [OR]: 1.13, 95% confidence interval [CI]: 1.03–1.25) and intraocular pressure reduction rate (P=0.0150, OR: 0.97, 95% CI: 0.94–0.99) had a significant association with MD slope deterioration.
Conclusion: In the current analysis of Japanese patients with POAG, baseline refraction was a factor significantly associated with MD slope deterioration as well as intraocular pressure reduction rate. When baseline refraction was classified into four groups, MD slope in myopia groups was less deteriorated as compared to those in the emmetropic/hyperopic group.

Keywords: primary open-angle glaucoma, normal-tension glaucoma, myopia, refraction, visual field progression, MD slope, intraocular pressure reduction rate

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]