Back to Journals » International Journal of Nanomedicine » Volume 12

Pseudotyping exosomes for enhanced protein delivery in mammalian cells

Authors Meyer C, Losacco J, Stickney Z, Li L, Marriott G, Lu B

Received 28 January 2017

Accepted for publication 1 March 2017

Published 18 April 2017 Volume 2017:12 Pages 3153—3170

DOI https://doi.org/10.2147/IJN.S133430

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 3

Editor who approved publication: Dr Thomas Webster


Conary Meyer,1,* Joseph Losacco,1,* Zachary Stickney,1 Lingxuan Li,2 Gerard Marriott,3 Biao Lu1

1Department of Bioengineering, Santa Clara University, Santa Clara, 2Crown College, University of California at Santa Cruz, Santa Cruz, 3Department of Bioengineering, University of California at Berkeley, Berkeley, CA, USA

*These authors contributed equally to this work

Abstract: Exosomes are cell-derived nanovesicles that hold promise as living vehicles for intracellular delivery of therapeutics to mammalian cells. This potential, however, is undermined by the lack of effective methods to load exosomes with therapeutic proteins and to facilitate their uptake by target cells. Here, we demonstrate how a vesicular stomatitis virus glycoprotein (VSVG) can both load protein cargo onto exosomes and increase their delivery ability via a pseudotyping mechanism. By fusing a set of fluorescent and luminescent reporters with VSVG, we show the successful targeting and incorporation of VSVG fusions into exosomes by gene transfection and fluorescence tracking. We subsequently validate our system by live cell imaging of VSVG and its participation in endosomes/exosomes that are ultimately released from transfected HEK293 cells. We show that VSVG pseudotyping of exosomes does not affect the size or distributions of the exosomes, and both the full-length VSVG and the VSVG without the ectodomain are shown to integrate into the exosomal membrane, suggesting that the ectodomain is not required for protein loading. Finally, exosomes pseudotyped with full-length VSVG are internalized by multiple-recipient cell types to a greater degree compared to exosomes loaded with VSVG without the ectodomain, confirming a role of the ectodomain in cell tropism. In summary, our work introduces a new genetically encoded pseudotyping platform to load and enhance the intracellular delivery of therapeutic proteins via exosome-based vehicles to target cells.

Keywords: exosome, VSVG, protein delivery, nanotechnology

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]