Back to Journals » International Journal of Nanomedicine » Volume 7

Progress on RNAi-based molecular medicines

Authors Chen J, Xie JP

Received 17 March 2012

Accepted for publication 14 April 2012

Published 26 July 2012 Volume 2012:7 Pages 3971—3980

DOI https://doi.org/10.2147/IJN.S31897

Review by Single-blind

Peer reviewer comments 2

Jing Chen, Jianping Xie

Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing, China

Abstract: RNA interference (RNAi) is a promising strategy to suppress the expression of disease-relevant genes and induce post-transcriptional gene silencing. Their simplicity and stability endow RNAi with great advantages in molecular medicine. Several RNAi-based drugs are in various stages of clinical investigation. This review summarizes the ongoing research endeavors on RNAi in molecular medicine, delivery systems for RNAi-based drugs, and a compendium of RNAi drugs in different stages of clinical development. Of special interest are RNAi-based drug target discovery and validation, delivery systems for RNAi-based drugs, such as nanoparticles, rabies virus protein-based vehicles, and bacteriophages for RNA packaging.

Keywords: RNA interference, delivery systems, liposome, nanoparticle, molecular medicines

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

Acquired hemophilia A: emerging treatment options

Janbain M, Leissinger CA, Kruse-Jarres R

Journal of Blood Medicine 2015, 6:143-150

Published Date: 8 May 2015

A new recombinant factor VIII: from genetics to clinical use

Santagostino E

Drug Design, Development and Therapy 2014, 8:2507-2515

Published Date: 12 December 2014

Second case report of successful electroconvulsive therapy for a patient with schizophrenia and severe hemophilia A

Saito N, Shioda K, Nisijima K, Kobayashi T, Kato S

Neuropsychiatric Disease and Treatment 2014, 10:865-867

Published Date: 16 May 2014

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

The use of PEGylated liposomes in the development of drug delivery applications for the treatment of hemophilia

Rivka Yatuv, Micah Robinson, Inbal Dayan-Tarshish, et al

International Journal of Nanomedicine 2010, 5:581-591

Published Date: 6 August 2010