Back to Journals » Stem Cells and Cloning: Advances and Applications » Volume 3

Potential sources of stem cells as a regenerative therapy for Parkinson's disease

Authors El-Sadik A

Published 6 December 2010 Volume 2010:3 Pages 183—191


Review by Single-blind

Peer reviewer comments 2

Abir Oueida El-Sadik
Department of Anatomy and Embryology, Scientific Research Unit, Female Health Science College, King Saud University, Riyadh, Kingdom of Saudi Arabia

Abstract: Stem cells are believed to hold enormous promise as potential replacement therapy in the treatment of neurodegenerative diseases such as Parkinson's disease (PD). Stem cells were investigated to be the alternative therapeutic source capable of differentiating into dopamine (DA) neurons. Multiple important signaling factors were recorded for the induction of DA neuronal traits from mouse embryonic stem cells (ESCs) such as fibroblast growth factor 8, sonic hedgehog, and Wnt 1. Recent protocols were described for the differentiation of human ESCs into DA neurons, achieving high efficiency of DA neuronal derivation. Despite that, the use of human ESCs is still ethically controversial. The transcription factors necessary for DA neuron development from adult neural stem cells (NSCs), such as Pitx3, Nurr1, En-1, En-2, Lmx1a, Lmx1b, Msx1, and Ngn2, were investigated. In addition to replacement of lost DA neurons, adult NSCs were recorded to provide neuroprotective and neurogenic factors for the mesencephalon. In addition, induced pluripotent stem cells and bone marrow-derived mesenchymal stem cells represent reliable stem cell sources of DA neurons. Future studies are recommended to provide further insight into the regenerative capacity of stem cells needed for the treatment of PD.

Keywords: dopamine, embryonic stem cells, neural stem cells, Parkinson's disease, induced pluripotent stem cells, mesenchymal stem cells

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]


Other article by this author:

Nanoparticle-labeled stem cells: a novel therapeutic vehicle

Abir O El-Sadik, Afaf El-Ansary, Sherif M Sabry

Clinical Pharmacology: Advances and Applications 2010, 2:9-16

Published Date: 16 March 2010

Readers of this article also read:

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

A new recombinant factor VIII: from genetics to clinical use

Santagostino E

Drug Design, Development and Therapy 2014, 8:2507-2515

Published Date: 12 December 2014

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010