Back to Journals » International Journal of Nanomedicine » Volume 12

Polyethylenimine-based micro/nanoparticles as vaccine adjuvants

Authors Shen C, Li J, Zhang Y, Li Y, Shen G, Zhu J, Tao J

Received 25 March 2017

Accepted for publication 12 June 2017

Published 31 July 2017 Volume 2017:12 Pages 5443—5460


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Dr Lei Yang

Chen Shen,1 Jun Li,1 Yi Zhang,1 Yuce Li,2 Guanxin Shen,3 Jintao Zhu,2 Juan Tao1

1Department of Dermatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; 2School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China; 3Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China

Abstract: Vaccines have shown great success in treating and preventing tumors and infections, while adjuvants are always demanded to ensure potent immune responses. Polyethylenimine (PEI), as one of the well-studied cationic polymers, has been used as a transfection reagent for decades. However, increasing evidence has shown that PEI-based particles are also capable of acting as adjuvants. In this paper, we briefly review the physicochemical properties and the broad applications of PEI in different fields, and elaborate on the intracellular processes of PEI-based vaccines. In addition, we sum up the proof of their in vivo and clinical applications. We also highlight some mechanisms proposed for the intrinsic immunoactivation function of PEI, followed by the challenges and future perspectives of the applications of PEI in the vaccines, as well as some strategies to elicit the desirable immune responses.

Keywords: cationic polymers, APCs, immunoactivation, danger signals, anti-infection, anticancer

Corrigendum for this paper has been published

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]