Back to Journals » Clinical Ophthalmology » Volume 8

Plasma homocysteine and genetic variants of homocysteine metabolism enzymes in patients from central Greece with primary open-angle glaucoma and pseudoexfoliation glaucoma

Authors Zacharaki F, Hadjigeorgiou G, Koliakos G, Morrison M, Tsezou A, Chatzoulis D, Almpanidou P, Topouridou K, Karabatsas C, Pefkianaki M, DeAngelis M, Tsironi EE

Received 26 March 2014

Accepted for publication 16 April 2014

Published 11 September 2014 Volume 2014:8 Pages 1819—1825

DOI https://doi.org/10.2147/OPTH.S64904

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 2


Fani Zacharaki,1 Georgios M Hadjigeorgiou,2 Georgios G Koliakos,3 Margaux A Morrison,4 Aspasia Tsezou,5 Dimitrios Z Chatzoulis,1 Pavlina Almpanidou,1 Konstantina Topouridou,3 Constantinos H Karabatsas,1 Maria Pefkianaki,1 Margaret M DeAngelis,4 Evangelia E Tsironi1

1Department of Ophthalmology, 2Department of Neurology, Faculty of Medicine, University of Thessaly, Larissa, 3Department of Biochemistry, Medical School, Aristotles University of Thessaloniki, Thessaloniki, Greece; 4Department of Ophthalmology and Visual Sciences, John A Moran Eye Center, University of Utah, Salt Lake City, UT, USA; 5Department of Biology, Faculty of Medicine, University of Thessaly, Larissa, Greece

Background: The purpose of this study was to investigate plasma homocysteine levels and polymorphisms in genes encoding enzymes in the metabolic pathway of homocysteine in association with primary open-angle glaucoma (POAG) and pseudoexfoliation glaucoma (PXFG).
Methods: A total of 156 glaucoma patients (76 with POAG and 80 with PXFG) and 135 controls matched for age and sex were enrolled in this study. Plasma homocysteine levels were measured using a commercially available enzyme-linked immunosorbent assay kit. DNA was extracted from peripheral blood leukocytes and real-time polymerase chain reaction was performed for genotyping of the samples. Patients were genotyped using predesigned TaqMan® single nucleo­tide polymorphism genotyping assays for two exon variations (rs1801131, rs1801133) in the 5,10-methylenetetrahydrofolate reductase (MTHFR) gene and one intron variation (rs8006686) in the methylenetetrahydrofolate dehydrogenase (MTHFD1) gene.
Results: Homocysteine levels were slightly higher in the patient group (POAG and PXFG) compared with controls, but the difference did not reach statistical significance. The minor alleles of the MTHFR single nucleotide polymorphisms showed a protective effect for POAG and showed an increased risk for PXFG, but none of these associations reached statistical significance (P>0.05). The minor allele of MTHFD1 rs8006686 showed a trend for increased risk of both POAG and PXFG (P>0.05). No statistically significant interaction was seen between the genetic variants and homocysteine levels (P>0.05).
Conclusion: Our results show that neither the examined single nucleotide polymorphisms from genes involved in the pathway of homocysteine metabolism nor the measured homocysteine levels were associated with POAG or PXFG in our study cohort.

Keywords: homocysteine, glaucoma, polymorphisms

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]