Back to Journals » International Journal of Nanomedicine » Volume 15

Phytoglycogen Nanoparticle Delivery System for Inorganic Selenium Reduces Cytotoxicity without Impairing Selenium Bioavailability

Authors Alkie TN, de Jong J, Moore E, DeWitte-Orr SJ

Received 15 October 2020

Accepted for publication 5 December 2020

Published 24 December 2020 Volume 2020:15 Pages 10469—10479

DOI https://doi.org/10.2147/IJN.S286948

Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Editor who approved publication: Prof. Dr. Thomas J. Webster


Tamiru N Alkie,1 Jondavid de Jong,1,2 Emily Moore,2 Stephanie J DeWitte-Orr1

1Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada; 2Glysantis Inc, Guelph, ON N1C 0A1, Canada

Correspondence: Stephanie J DeWitte-Orr
Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada
Tel +1 519 884 0710
Email sdewitteorr@wlu.ca

Purpose: Selenium is an essential trace element that supports animal health through the antioxidant defense system by protecting cells from oxidative-related damage. Using inorganic selenium species, such as sodium selenite (Na Sel), as a food supplement is cost-effective; however, its limitation as a nutritional supplement is its cytotoxicity. One strategy to mitigate this problem is by delivering inorganic selenium using a nanoparticle delivery system (SeNP).
Methods: Rainbow trout intestinal epithelial cells, bovine turbinate cells and bovine intestinal myofibroblasts were treated with soluble Na Sel or SeNPs. Two SeNP formulations were tested; SeNP-Ionic where inorganic selenium was ionically bound to cationic phytoglycogen (PhG) NPs, and SeNP-Covalent, where inorganic selenium was covalently bound to PhG NPs. Selenium-induced cytotoxicity along with selenium bioavailability were measured.
Results: SeNPs (SeNP-Ionic or SeNP-Covalent) substantially reduced cytotoxicity in all cell types examined compared to similar doses of soluble inorganic selenium. The SeNP formulations did not affect selenium bioavailability, as selenium-induced glutathione peroxidase (GPx) activity and GPx1 transcript levels were similarly elevated whether cells were treated with soluble Na Sel or SeNPs. This was the case for all three cell types tested.
Conclusion: Nanoparticle-assisted inorganic selenium delivery, which demonstrated equal bioavailability without causing deleterious cytotoxic side effects, has potential applications for safely supplementing animal diets with inorganic selenium at what are usually toxic doses.

Keywords: cytotoxicity, bovine, GPx, phytoglycogen, rainbow trout, sodium selenite

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]