Back to Journals » International Journal of Nanomedicine » Volume 10 » Issue 1

Phthalocyanine-loaded graphene nanoplatform for imaging-guided combinatorial phototherapy

Authors Taratula O, Patel M, Schumann C, Naleway MA, Pang AJ, He H, Taratula O

Received 17 January 2015

Accepted for publication 15 February 2015

Published 24 March 2015 Volume 2015:10(1) Pages 2347—2362

DOI https://doi.org/10.2147/IJN.S81097

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Editor who approved publication: Dr Thomas J Webster

Olena Taratula,1 Mehulkumar Patel,2 Canan Schumann,1 Michael A Naleway,1 Addison J Pang,1 Huixin He,2 Oleh Taratula1

1Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Portland, OR, USA; 2Department of Chemistry, Rutgers University-Newark, Newark, NJ, USA

Abstract: We report a novel cancer-targeted nanomedicine platform for imaging and prospect for future treatment of unresected ovarian cancer tumors by intraoperative multimodal phototherapy. To develop the required theranostic system, novel low-oxygen graphene nanosheets were chemically modified with polypropylenimine dendrimers loaded with phthalocyanine (Pc) as a photosensitizer. Such a molecular design prevents fluorescence quenching of the Pc by graphene nanosheets, providing the possibility of fluorescence imaging. Furthermore, the developed nanoplatform was conjugated with poly(ethylene glycol), to improve biocompatibility, and with luteinizing hormone-releasing hormone (LHRH) peptide, for tumor-targeted delivery. Notably, a low-power near-infrared (NIR) irradiation of single wavelength was used for both heat generation by the graphene nanosheets (photothermal therapy [PTT]) and for reactive oxygen species (ROS)-production by Pc (photodynamic therapy [PDT]). The combinatorial phototherapy resulted in an enhanced destruction of ovarian cancer cells, with a killing efficacy of 90%–95% at low Pc and low-oxygen graphene dosages, presumably conferring cytotoxicity to the synergistic effects of generated ROS and mild hyperthermia. An animal study confirmed that Pc loaded into the nanoplatform can be employed as a NIR fluorescence agent for imaging-guided drug delivery. Hence, the newly developed Pc-graphene nanoplatform has the significant potential as an effective NIR theranostic probe for imaging and combinatorial phototherapy.

Keywords: graphene nanosheets, phthalocyanine, photothermal therapy, photodynamic therapy, theranostic
 

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Predicting frequent COPD exacerbations using primary care data

Kerkhof M, Freeman D, Jones R, Chisholm A, Price DB

International Journal of Chronic Obstructive Pulmonary Disease 2015, 10:2439-2450

Published Date: 9 November 2015

Arsenic sulfide combined with JQ1, chemotherapy agents, or celecoxib inhibit gastric and colon cancer cell growth

Zhang L, Tong Y, Zhang X, Pan M, Chen S

Drug Design, Development and Therapy 2015, 9:5851-5862

Published Date: 30 October 2015

Cytotoxicity and physicochemical characterization of iron–manganese-doped sulfated zirconia nanoparticles [Corrigendum]

Al-Fahdawi MQ, Rasedee A, Al-Qubaisi MS, Alhassan FH, Rosli R, El Zowalaty ME, Naadja SE, Webster TJ, Taufiq-Yap YH

International Journal of Nanomedicine 2015, 10:6657-6658

Published Date: 28 October 2015

Advantages of diabetic tractional retinal detachment repair

Sternfeld A, Axer-Siegel R, Stiebel-Kalish H, Weinberger D, Ehrlich R

Clinical Ophthalmology 2015, 9:1989-1994

Published Date: 23 October 2015

Fluoromica nanoparticle cytotoxicity in macrophages decreases with size and extent of uptake

Tee N, Zhu Y, Mortimer GM, Martin DJ, Minchin RF

International Journal of Nanomedicine 2015, 10:2363-2375

Published Date: 26 March 2015

Therapeutic antitumor efficacy of tumor-derived autophagosome (DRibble) vaccine on head and neck cancer

Su H, Luo Q, Xie H, Huang XF, Ni YH, Mou YB, Hu QG

International Journal of Nanomedicine 2015, 10:1921-1930

Published Date: 10 March 2015

Nanopharmaceuticals (part 1): products on the market

Weissig V, Pettinger TK, Murdock N

International Journal of Nanomedicine 2014, 9:4357-4373

Published Date: 15 September 2014

Nanotherapeutics in the EU: an overview on current state and future directions

Hafner A, Lovrić J, Perina Lakoš G, Pepić I

International Journal of Nanomedicine 2014, 9:1005-1023

Published Date: 19 February 2014