Back to Journals » International Journal of Nanomedicine » Volume 13

pH-sensitive PEGylation of RIPL peptide-conjugated nanostructured lipid carriers: design and in vitro evaluation

Authors Kim CH, Sa CK, Goh MS, Lee ES, Kang TH, Yoon HY, Battogtokh G, Ko YT, Choi YW

Received 17 August 2018

Accepted for publication 25 September 2018

Published 23 October 2018 Volume 2018:13 Pages 6661—6675

DOI https://doi.org/10.2147/IJN.S184355

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Cristina Weinberg

Peer reviewer comments 3

Editor who approved publication: Dr Thomas J Webster


Chang Hyun Kim,1,* Cheol-Ki Sa,1,* Min Su Goh,1 Eun Seok Lee,1 Tae Hoon Kang,1 Ho Yub Yoon,1 Gantumur Battogtokh,2 Young Tag Ko,2 Young Wook Choi1

1College of Pharmacy, Chung-Ang University, Seoul, Republic of Korea; 2College of Pharmacy, Gachon University, Incheon, Republic of Korea

*These authors contributed equally to this work

Background: RIPL peptide (IPLVVPLRRRRRRRRC)-conjugated nanostructured lipid carriers (RIPL-NLCs) can facilitate selective drug delivery to hepsin (Hpn)-expressing cancer cells, but they exhibit low stability in the blood. Generally, biocompatible and nontoxic poly(ethylene glycol) surface modification (PEGylation) can enhance NLC stability, although this may impair drug delivery and NLC clearance. To attain RIPL-NLC steric stabilization without impairing function, pH-sensitive cleavable PEG (cPEG) was grafted onto RIPL-NLCs (cPEG-RIPL-NLCs).
Methods: Various types of NLC formulations including RIPL-NLCs, PEG-RIPL-NLCs, and cPEG-RIPL-NLCs were prepared using the solvent emulsification–evaporation method and characterized for particle size, zeta potential (ZP), and cytotoxicity. The steric stabilization effect was evaluated by plasma protein adsorption and phagocytosis inhibition studies. pH-sensitive cleavage was investigated using the dialysis method under different pH conditions. Employing a fluorescent probe (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate [DiI]), in vitro drug delivery capacity of the cPEG-RIPL-NLCs under different pH conditions was also performed on Hpn-expressing SKOV3 cells and 3D-tumor spheroids.
Results: All prepared NLCs showed homogenous dispersion (<220 nm in size) with a negative ZP (−18 to −22 mV), except for positively charged RIPL-NLCs (~10 mV), revealing no significant cytotoxicity in either SKOV3 or RAW 264.7 cell lines. cPEG-RIPL-NLC protein adsorption was 1.75-fold less than that of RIPL-NLCs, and PEGylation significantly reduced the macrophage uptake. PEG detachment from the cPEG-RIPL-NLCs was pH-sensitive and time dependent. At 2 hours incubation, cPEG-RIPL-NLCs and PEG-RIPL-NLCs exhibited comparable cellular uptake at pH 7.4, whereas cPEG-RIPL-NLC uptake was increased over 2-fold at pH 6.5. 3D-spheroid penetration also demonstrated pH-sensitivity: at pH 7.4, cPEG-RIPL-NLCs could not penetrate deep into the spheroid core region during 2 hours, whereas at pH 6.5, high fluorescence intensity in the core region was observed for both cPEG-RIPL-NLC- and RIPL-NLC-treated groups.
Conclusion: cPEG-RIPL-NLCs are good candidates for Hpn-selective drug targeting in conjunction with pH-responsive PEG cleavage.

Keywords: cleavable PEG, cancer targeting, tumor spheroid, steric stabilization, cellular uptake

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]