Back to Journals » International Journal of Nanomedicine » Volume 7

PEG-nanolized ultrasmall selenium nanoparticles overcome drug resistance in hepatocellular carcinoma HepG2 cells through induction of mitochondria dysfunction

Authors Zheng S, Li X, Zhang Y, Xie Q, Wong YS, Zheng W, Chen T

Received 16 February 2012

Accepted for publication 22 April 2012

Published 23 July 2012 Volume 2012:7 Pages 3939—3949

DOI https://doi.org/10.2147/IJN.S30940

Review by Single-blind

Peer reviewer comments 5

Shanyuan Zheng,1,2 Xiaoling Li,1 Yibo Zhang,1 Qiang Xie,3 Yum-Shing Wong,2 Wenjie Zheng,1 Tianfeng Chen,1,3,4

1
Department of Chemistry, Jinan University, Guangzhou, China; 2School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; 3Wu Jing Zong Dui Hospital of Guangdong Province, Guangzhou, China; 4State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, China

Abstract: Gray selenium (Se) is one of the most widely used Se sources with very limited biocompatibility and bioactivity. In the present study, a simple method for the preparation of ultrasmall selenium nanoparticles (SeNPs) through direct nanolization of gray selenium by polyethylene glycol (PEG) was demonstrated. Monodisperse and homogeneous PEG-SeNPs with ultrasmall diameters were successfully prepared under optimized conditions. The products were characterized using various microscopic and spectroscopic methods, and the results suggest that the amphoteric properties of PEG and the coordination between oxygen and selenium atoms contributed to the formation of ultrasmall nanoparticles. PEG-SeNPs exhibited stronger growth inhibition on drug-resistant hepatocellular carcinoma (R-HepG2) cells than on normal HepG2 cells. Dose-dependent apoptosis was induced by PEG-SeNPs in R-HepG2 cells, as evidenced by an increase in the sub-G1 cell population. Further investigation on the underlying molecular mechanisms revealed that depletion of mitochondrial membrane potential and generation of superoxide anions contributed to PEG-SeNPs-induced apoptotic cell death in R-HepG2 cells. Our results suggest that PEG-SeNPs may be a candidate for further evaluation as a chemotherapeutic agent for drug-resistant liver cancer, and the strategy to use PEG200 as a surface decorator could be a highly efficient way to enhance the anticancer efficacy of nanomaterials.

Keywords: selenium, PEG, nanolization, drug resistance, apoptosis

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other articles by this author:

Purification and in vitro antioxidant activities of tellurium-containing phycobiliproteins from tellurium-enriched Spirulina platensis

Yang F, Wong KH, Yang YF, Li XL, Jiang J, Zheng WJ, Wu HL, Chen TF

Drug Design, Development and Therapy 2014, 8:1789-1800

Published Date: 9 October 2014

Targeting nanomaterials: future drugs for cancer chemotherapy

Zhang Y, Chen T

International Journal of Nanomedicine 2012, 7:5283-5286

Published Date: 10 October 2012

Surface decoration by Spirulina polysaccharide enhances the cellular uptake and anticancer efficacy of selenium nanoparticles

Yang F, Tang Q, Zhong X, Bai Y, Chen T, Zhang Y, Li Y, Zheng W

International Journal of Nanomedicine 2012, 7:835-844

Published Date: 17 February 2012

Readers of this article also read:

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

In vitro and in vivo evaluation of a sublingual fentanyl wafer formulation

Lim SCB, Paech MJ, Sunderland B, Liu Y

Drug Design, Development and Therapy 2013, 7:317-324

Published Date: 12 April 2013

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Servant leadership: a case study of a Canadian health care innovator

Vanderpyl TH

Journal of Healthcare Leadership 2012, 4:9-16

Published Date: 16 February 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010

Pharmacokinetics and tolerance study of intravitreal injection of dexamethasone-loaded nanoparticles in rabbits

Linhua Zhang, Yue Li, Chao Zhang, et al

International Journal of Nanomedicine 2009, 4:175-183

Published Date: 4 September 2009