Back to Journals » Research and Reports in Biology » Volume 6

On the antibacterial effects of manuka honey: mechanistic insights

Authors Roberts AEL, Brown HL, Jenkins RE

Received 12 September 2015

Accepted for publication 2 October 2015

Published 29 October 2015 Volume 2015:6 Pages 215—224

DOI https://doi.org/10.2147/RRB.S75754

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Venkatesh Kota

Peer reviewer comments 2

Editor who approved publication: Professor Zvi Kelman

Aled Edward Lloyd Roberts,* Helen Louise Brown,* Rowena Eleri Jenkins

Department of Biomedical Sciences, Cardiff Metropolitan University, Cardiff, Wales, UK

*These authors contributed equally to this work

Abstract: Antimicrobial resistance (AMR) is an increasing clinical problem precipitated by the inappropriate use of antibiotics in the later parts of the 20th Century. This problem, coupled with the lack of novel therapeutics in the development pipeline, means AMR is reaching crisis point, with an expected annual death rate of ten million people worldwide by 2050. To reduce, and to potentially remedy this problem, many researchers are looking into natural compounds with antimicrobial and/or antivirulence activity. Manuka honey is an ancient antimicrobial remedy with a good track record against a wide range of nosocomial pathogens that have increased AMR. Its inhibitory effects are the result of its constituent components, which add varying degrees of antimicrobial efficacy to the overall activity of manuka honey. The antimicrobial efficacy of manuka honey and some of its constituent components (such as methylglyoxal and leptosperin) are known to bestow some degree of antimicrobial efficacy to manuka honey. Despite growing in vitro evidence of its antimicrobial efficacy, the in vivo use of manuka honey (especially in a clinical environment) has been unexpectedly slow, partly due to the lack of mechanistic data. The mechanism by which manuka honey achieves its inhibitory efficacy has recently been identified against Staphylococcus aureus and Pseudomonas aeruginosa, with both of these contrasting organisms being inhibited through different mechanisms. Manuka honey inhibits S. aureus by interfering with the cell division process, whereas P. aeruginosa cells lyse in its presence due to the reduction of a key structural protein. In addition to these inhibitory effects, manuka honey is known to reduce virulence, motility, and biofilm formation. With this increasing in vitro dataset, we review the components and our mechanistic knowledge of manuka honey and how manuka honey could potentially be utilized in the future to impact positively on the treatment of microbial, resistant infections.

Keywords: Staphylococcus aureus, Pseudomonas aeruginosa, biofilm, antibiotic resistance

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Human adipose stem cell and ASC-derived cardiac progenitor cellular therapy improves outcomes in a murine model of myocardial infarction

Davy PMC, Lye KD, Mathews J, Owens JB, Chow AY, Wong L, Moisyadi S, Allsopp RC

Stem Cells and Cloning: Advances and Applications 2015, 8:135-148

Published Date: 29 October 2015

The relevance of piroxicam for the prevention and treatment of nonmelanoma skin cancer and its precursors

Campione E, Paternò EJ, Candi E, Falconi M, Costanza G, Diluvio L, Terrinoni A, Bianchi L, Orlandi A

Drug Design, Development and Therapy 2015, 9:5843-5850

Published Date: 29 October 2015

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010