Back to Browse Journals » Patient Preference and Adherence » Volume 7

Nominal group technique to select attributes for discrete choice experiments: an example for drug treatment choice in osteoporosis

Authors Hiligsmann M, van Durme C, Geusens P, Dellaert BG, Dirksen CD, van der Weijden T, Reginster JY, Boonen A

Received 22 September 2012

Accepted for publication 28 November 2012

Published 7 February 2013 Volume 2013:7 Pages 133—139


Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 2

Mickael Hiligsmann,1-3 Caroline van Durme,2 Piet Geusens,2 Benedict GC Dellaert,4 Carmen D Dirksen,3 Trudy van der Weijden,5 Jean-Yves Reginster,6 Annelies Boonen2

1Department of Health Services Research, School for Public Health and Primary Care (CAPHRI), Maastricht University, The Netherlands, 2Department of Internal Medicine, CAPHRI, Maastricht University, The Netherlands, 3Department of Clinical Epidemiology and Medical Technology Assessment, CAPHRI, Maastricht University, The Netherlands, 4Department of Business Economics, Erasmus Rotterdam University, The Netherlands, 5Department of General Practice, CAPHRI, Maastricht University, The Netherlands, 6Department of Public Health, Epidemiology and Health Economics, University of Liege, Belgium

Background: Attribute selection represents an important step in the development of discrete-choice experiments (DCEs), but is often poorly reported. In some situations, the number of attributes identified may exceed what one may find possible to pilot in a DCE. Hence, there is a need to gain insight into methods to select attributes in order to construct the final list of attributes. This study aims to test the feasibility of using the nominal group technique (NGT) to select attributes for DCEs.
Methods: Patient group discussions (4–8 participants) were convened to prioritize a list of 12 potentially important attributes for osteoporosis drug therapy. The NGT consisted of three steps: an individual ranking of the 12 attributes by importance from 1 to 12, a group discussion on each of the attributes, including a group review of the aggregate score of the initial rankings, and a second ranking task of the same attributes.
Results: Twenty-six osteoporotic patients participated in five NGT sessions. Most (80%) of the patients changed their ranking after the discussion. However, the average initial and final ranking did not differ markedly. In the final ranking, the most important medication attributes were effectiveness, side effects, and frequency and mode of administration. Some (15%) of the patients did not correctly rank from 1 to 12, and the order of attributes did play a role in the ranking.
Conclusion: The NGT is feasible for selecting attributes for DCEs. Although in the context of this study, the NGT session had little impact on prioritizing attributes, this approach is rigorous, transparent, and improves the face validity of DCEs. Additional research in other contexts (different decisional problems or different diseases) is needed to determine the added value of the NGT session, to assess the optimal ranking/rating method with control of ordering effects, and to compare the attributes selected with the different approaches.

Keywords: discrete choice experiment, nominal group technique, patient preference, medication attributes, osteoporosis

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]


Readers of this article also read:

Hematuria following Botox treatment for upper limb spasticity: a case report

Lo TC, Yeung ST, Lee S, Chang EY

Journal of Pain Research 2015, 8:619-622

Published Date: 14 September 2015

Emerging and future therapies for hemophilia

Carr ME, Tortella BJ

Journal of Blood Medicine 2015, 6:245-255

Published Date: 3 September 2015

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Particle size reduction to the nanometer range: a promising approach to improve buccal absorption of poorly water-soluble drugs

Rao S, Song Y, Peddie F, Evans AM

International Journal of Nanomedicine 2011, 6:1245-1251

Published Date: 20 June 2011

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010