Back to Journals » International Journal of Nanomedicine » Volume 7

New chitosan nanobubbles for ultrasound-mediated gene delivery: preparation and in vitro characterization

Authors Cavalli R, Bisazza A, Trotta M, Argenziano M, Civra A, Donalisio M, Lembo D

Received 16 February 2012

Accepted for publication 17 March 2012

Published 29 June 2012 Volume 2012:7 Pages 3309—3318

DOI https://doi.org/10.2147/IJN.S30912

Review by Single-blind

Peer reviewer comments 2

Roberta Cavalli,1 Agnese Bisazza,1 Michele Trotta,1 Monica Argenziano,1 Andrea Civra,2 Manuela Donalisio,2 David Lembo2

1Department of Pharmaceutical Sciences and Technology; 2Department of Clinical and Biological Sciences University of Turin, Turin, Italy

Background: The development of nonviral gene delivery systems is one of the most intriguing topics in nanomedicine. However, despite the advances made in recent years, several key issues remain unsettled. One of the main problems relates to the difficulty in designing nanodevices for targeted delivery of genes and other drugs to specific anatomic sites. In this study, we describe the development of a novel chitosan nanobubble-based gene delivery system for ultrasound-triggered release.
Methods and results: Chitosan was selected for the nanobubble shell because of its low toxicity, low immunogenicity, and excellent biocompatibility, while the core consisted of perfluoropentane. DNA-loaded chitosan nanobubbles were formed with a mean diameter of less than 300 nm and a positive surface charge. Transmission electron microscopic analysis confirmed composition of the core-shell structure. The ability of the chitosan nanobubbles to complex with and protect DNA was confirmed by agarose gel assay. Chitosan nanobubbles were found to be stable following insonation (2.5 MHz) for up to 3 minutes at 37°C. DNA release was evaluated in vitro in both the presence and absence of ultrasound. The release of chitosan nanobubble-bound plasmid DNA occurred after just one minute of insonation. In vitro transfection experiments were performed by exposing adherent COS7 cells to ultrasound in the presence of different concentrations of plasmid DNA-loaded nanobubbles. In the absence of ultrasound, nanobubbles failed to trigger transfection at all concentrations tested. In contrast, 30 seconds of ultrasound promoted a moderate degree of transfection. Cell viability experiments demonstrated that neither ultrasound nor the nanobubbles affected cell viability under these experimental conditions.
Conclusion: Based on these results, chitosan nanobubbles have the potential to be promising tools for ultrasound-mediated DNA delivery.

Keywords: chitosan, nanobubbles, transfection, DNA, gene carrier, ultrasound

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

FGF1-gold nanoparticle conjugates targeting FGFR efficiently decrease cell viability upon NIR irradiation

Szlachcic A, Pala K, Zakrzewska M, Jakimowicz P, Wiedlocha A, Otlewski J

International Journal of Nanomedicine 2012, 7:5915-5927

Published Date: 29 November 2012

Long-term MRI tracking of dual-labeled adipose-derived stem cells homing into mouse carotid artery injury

Qin JB, Li KA, Li XX, Xie QS, Lin JY, Ye KC, Jiang ME, Zhang GX, Lu XW

International Journal of Nanomedicine 2012, 7:5191-5203

Published Date: 2 October 2012

Injectable hydrogel as stem cell scaffolds from the thermosensitive terpolymer of NIPAAm/AAc/HEMAPCL

Lian S, Xiao Y, Bian QQ, Xia Y, Guo CF, Wang SG, Lang MD

International Journal of Nanomedicine 2012, 7:4893-4905

Published Date: 12 September 2012

Bioconjugates of PAMAM dendrimers with trans-retinal, pyridoxal, and pyridoxal phosphate

Filipowicz A, Wołowiec S

International Journal of Nanomedicine 2012, 7:4819-4828

Published Date: 6 September 2012

Novel dipeptide nanoparticles for effective curcumin delivery

Alam S, Panda JJ, Chauhan VS

International Journal of Nanomedicine 2012, 7:4207-4222

Published Date: 3 August 2012

Effects of chitosan and water-soluble chitosan micro- and nanoparticles in obese rats fed a high-fat diet

Zhang HL, Zhong XB, Tao Y, Wu SH, Su ZQ

International Journal of Nanomedicine 2012, 7:4069-4076

Published Date: 27 July 2012

Actively-targeted LTVSPWY peptide-modified magnetic nanoparticles for tumor imaging

Jie L-Y, Cai L-L, Wang L-J, Ying X-Y, Yu R-S, Zhang M-M,Du Y-Z

International Journal of Nanomedicine 2012, 7:3981-3989

Published Date: 24 July 2012

Nanoinformatics: a new area of research in nanomedicine

Maojo V, Fritts M, de la Iglesia D, Cachau RE, Garcia-Remesal M, Mitchell JA, Kulikowski C

International Journal of Nanomedicine 2012, 7:3867-3890

Published Date: 24 July 2012

Evaluation of the genotoxicity of cellulose nanofibers

de Lima R, Feitosa LO, Maruyama CR, Barga MA, Yamawaki PC, Vieira IJ, Teixeira EM, Corrêa AC, Mattoso LH, Fraceto LF

International Journal of Nanomedicine 2012, 7:3555-3565

Published Date: 11 July 2012