Back to Journals » International Journal of Nanomedicine » Volume 9 » Issue 1

Nanosilver particles in medical applications: synthesis, performance, and toxicity

Authors Ge L, Li Q, Wang M, Ouyang J, Li X, Xing MMQ

Received 26 September 2013

Accepted for publication 6 December 2013

Published 16 May 2014 Volume 2014:9(1) Pages 2399—2407


Checked for plagiarism Yes

Review by Single anonymous peer review

Peer reviewer comments 2

Liangpeng Ge,1–5,* Qingtao Li,2,3,6,* Meng Wang,2,3 Jun Ouyang,6 Xiaojian Li,7 Malcolm MQ Xing2,3

Chongqing Academy of Animal Sciences, Chongqing, People's Republic of China; 2Department of Mechanical and Manufacturing Engineering, Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Canada; 3Manitoba Institute of Child Health, Winnipeg, Canada; 4Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing, People's Republic of China; 5Key Laboratory of Pig Industry Sciences, Chongqing, People's Republic of China; 6School of Basic Medical Science, Southern Medical University, Guangzhou, People's Republic of China; 7Department of Plastic Surgery, Nanfang Hospital, Guangzhou, People's Republic of China

*These authors contributed equally to this work

Abstract: Nanosilver particles (NSPs), are among the most attractive nanomaterials, and have been widely used in a range of biomedical applications, including diagnosis, treatment, drug delivery, medical device coating, and for personal health care. With the increasing application of NSPs in medical contexts, it is becoming necessary for a better understanding of the mechanisms of NSPs' biological interactions and their potential toxicity. In this review, we first introduce the synthesis routes of NSPs, including physical, chemical, and biological or green synthesis. Then the unique physiochemical properties of NSPs, such as antibacterial, antifungal, antiviral, and anti-inflammatory activity, are discussed in detail. Further, some recent applications of NSPs in prevention, diagnosis, and treatment in medical fields are described. Finally, potential toxicology considerations of NSPs, both in vitro and in vivo, are also addressed.

Keywords: nanosilver particles, synthesis, biomedical application, toxicity

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]