Back to Journals » International Journal of Nanomedicine » Volume 10 » Issue 1

Nanoshell-mediated photothermal therapy can enhance chemotherapy in inflammatory breast cancer cells

Authors Fay BL, Melamed JR, Day ES

Received 24 July 2015

Accepted for publication 9 October 2015

Published 6 November 2015 Volume 2015:10(1) Pages 6931—6941

DOI https://doi.org/10.2147/IJN.S93031

Checked for plagiarism Yes

Review by Single-blind

Peer reviewers approved by Dr Yu Mi

Peer reviewer comments 2

Editor who approved publication: Dr Thomas J Webster

Brittany L Fay, Jilian R Melamed, Emily S Day

Biomedical Engineering, University of Delaware, Newark, DE, USA

Abstract: Nanoshell-mediated photothermal therapy (PTT) is currently being investigated as a standalone therapy for the treatment of cancer. The cellular effects of PTT include loss of membrane integrity, so we hypothesized that nanoshell-mediated PTT could potentiate the cytotoxicity of chemotherapy by improving drug accumulation in cancer cells. In this work, we validated our hypothesis using doxorubicin as a model drug and SUM149 inflammatory breast cancer cells as a model cancer subtype. In initial studies, SUM149 cells were exposed to nanoshells and near-infrared light and then stained with ethidium homodimer-1, which is excluded from cells with an intact plasma membrane. The results confirmed that nanoshell-mediated PTT could increase membrane permeability in SUM149 cells. In complementary experiments, SUM149 cells treated with nanoshells, near-infrared light, or a combination of the two to yield low-dose PTT were exposed to fluorescent rhodamine 123. Analyzing rhodamine 123 fluorescence in cells via flow cytometry confirmed that increased membrane permeability caused by PTT could enhance drug accumulation in cells. This was validated using fluorescence microscopy to assess intracellular distribution of doxorubicin. In succeeding experiments, SUM149 cells were exposed to subtherapeutic levels of doxorubicin, low-dose PTT, or a combination of the two treatments to determine whether the additional drug uptake induced by PTT is sufficient to enhance cell death. Analysis revealed minimal loss of viability relative to controls in cells exposed to subtherapeutic levels of doxorubicin, 15% loss of viability in cells exposed to low-dose PTT, and 35% loss of viability in cells exposed to combination therapy. These data indicate that nanoshell-mediated PTT is a viable strategy to potentiate the effects of chemotherapy and warrant further investigation of this approach using other drugs and cancer subtypes.

Keywords: nanoshells, photothermal therapy, hyperthermia, chemotherapy, sensitization, breast cancer

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

The effects of hierarchical micro/nanosurfaces decorated with TiO2 nanotubes on the bioactivity of titanium implants in vitro and in vivo

Ding XL, Zhou L, Wang JX, Zhao QX, Lin X, Gao Y, Li SB, Wu JY, Rong MD, Guo ZH, Lai CH, Lu HB, Jia F

International Journal of Nanomedicine 2015, 10:6955-6973

Published Date: 9 November 2015

Ganglioside-magnetosome complex formation enhances uptake of gangliosides by cells

Guan F, Li X, Guo J, Yang G, Li X

International Journal of Nanomedicine 2015, 10:6919-6930

Published Date: 6 November 2015

Engineering iodine-doped carbon dots as dual-modal probes for fluorescence and X-ray CT imaging

Zhang M, Ju H, Zhang L, Sun M, Zhou Z, Dai Z, Zhang L, Gong A, Wu C, Du F

International Journal of Nanomedicine 2015, 10:6943-6953

Published Date: 6 November 2015

Green synthesis of water-soluble nontoxic polymeric nanocomposites containing silver nanoparticles

Prozorova GF, Pozdnyakov AS, Kuznetsova NP, Korzhova SA, Emel’yanov AI, Ermakova TG, Fadeeva TV, Sosedova LM

International Journal of Nanomedicine 2014, 9:1883-1889

Published Date: 16 April 2014

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010