Back to Browse Journals » International Journal of Nanomedicine » Volume 7

Nanoparticle-based delivery of small interfering RNA: challenges for cancer therapy

Authors Miele E, Spinelli GP, Miele E, Di Fabrizio E, Ferretti E, Tomao S, Gulino A

Received 9 January 2012

Accepted for publication 28 February 2012

Published 20 July 2012 Volume 2012:7 Pages 3637—3657


Review by Single-blind

Peer reviewer comments 3

Evelina Miele,1,* Gian Paolo Spinelli,2,* Ermanno Miele,3 Enzo Di Fabrizio,3,6 Elisabetta Ferretti,4 Silverio Tomao,2 Alberto Gulino,1,5

1Department of Molecular Medicine, 2Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, 3Nanostructures, Istituto Italiano di Tecnologia, via Morego, 30, 16163 Genova, 4Department of Experimental Medicine, Sapienza University of Rome, Rome, 5Center for Life Nanoscience, Istituto Italiano di Tecnologia, Rome, Italy, 6BIONEM lab, University of Magna Graecia, Campus S. Venuta, Viale Europa 88100 Catanzaro, Italy

*These authors contributed equally to this work

Abstract: During recent decades there have been remarkable advances and profound changes in cancer therapy. Many therapeutic strategies learned at the bench, including monoclonal antibodies and small molecule inhibitors, have been used at the bedside, leading to important successes. One of the most important advances in biology has been the discovery that small interfering RNA (siRNA) is able to regulate the expression of genes, by a phenomenon known as RNA interference (RNAi). RNAi is one of the most rapidly growing fields of research in biology and therapeutics. Much research effort has gone into the application of this new discovery in the treatment of various diseases, including cancer. However, even though these molecules may have potential and strong utility, some limitations make their clinical application difficult, including delivery problems, side effects due to off-target actions, disturbance of physiological functions of the cellular machinery involved in gene silencing, and induction of the innate immune response. Many researchers have attempted to overcome these limitations and to improve the safety of potential RNAi-based therapeutics. Nanoparticles, which are nanostructured entities with tunable size, shape, and surface, as well as biological behavior, provide an ideal opportunity to modify current treatment regimens in a substantial way. These nanoparticles could be designed to surmount one or more of the barriers encountered by siRNA. Nanoparticle drug formulations afford the chance to improve drug bioavailability, exploiting superior tissue permeability, payload protection, and the “stealth” features of these entities. The main aims of this review are: to explain the siRNA mechanism with regard to potential applications in siRNA-based cancer therapy; to discuss the possible usefulness of nanoparticle-based delivery of certain molecules for overcoming present therapeutic limitations; to review the ongoing relevant clinical research with its pitfalls and promises; and to evaluate critically future perspectives and challenges in siRNA-based cancer therapy.

Keywords: small interfering RNA, nanoparticles, cancer therapy, delivery strategies, biological barriers, clinical trials

Download Article [PDF] View Full Text [HTML] 

Creative Commons License This work is published by Dove Medical Press Limited, and licensed under Creative Commons Attribution - Non Commercial (unported, v3.0) License. The full terms of the License are available at Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. Permissions beyond the scope of the License are administered by Dove Medical Press Limited. Information on how to request permission may be found at:

Readers of this article also read:

Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications

Xia Y, Zhou PY, Cheng XS, Xie Y, Liang C, Li C, Xu SG

International Journal of Nanomedicine 2013, 8:4197-4213

Published Date: 1 November 2013

Functionalized carbon nanotubes: biomedical applications

Vardharajula S, Ali SZ, Tiwari PM, Eroğlu E, Vig K, Dennis VA, Singh SR

International Journal of Nanomedicine 2012, 7:5361-5374

Published Date: 9 October 2012

Injectable hydrogel as stem cell scaffolds from the thermosensitive terpolymer of NIPAAm/AAc/HEMAPCL

Lian S, Xiao Y, Bian QQ, Xia Y, Guo CF, Wang SG, Lang MD

International Journal of Nanomedicine 2012, 7:4893-4905

Published Date: 12 September 2012

Downregulation of VEGF mRNA expression by triamcinolone acetonide acetate-loaded chitosan derivative nanoparticles in human retinal pigment epithelial cells

Zhou H, Yang L, Li H, Gong H, Cheng L, Zheng H, Zhang L, Lan Y

International Journal of Nanomedicine 2012, 7:4649-4660

Published Date: 22 August 2012

Studying the effect of particle size and coating type on the blood kinetics of superparamagnetic iron oxide nanoparticles

Roohi F, Lohrke J, Ide A, Schuetz G, Dassler K

International Journal of Nanomedicine 2012, 7:4447-4458

Published Date: 10 August 2012

A novel POSS-coated quantum dot for biological application

Rizvi SB, Yildirimer L, Ghaderi S, Ramesh B, Seifalian AM, Keshtgar M

International Journal of Nanomedicine 2012, 7:3915-3927

Published Date: 2 August 2012

Antimicrobial applications of nanotechnology: methods and literature

Seil JT, Webster TJ

International Journal of Nanomedicine 2012, 7:2767-2781

Published Date: 6 June 2012

In vitro cellular uptake of evodiamine and rutaecarpine using a microemulsion

Zhang YT, Huang ZB, Zhang SJ, Zhao JH, Wang Z, Liu Y, Feng NP

International Journal of Nanomedicine 2012, 7:2465-2472

Published Date: 18 May 2012