Back to Journals » International Journal of Nanomedicine » Volume 7

Nanofibrillar scaffolds induce preferential activation of Rho GTPases in cerebral cortical astrocytes

Authors Tiryaki VM, Ayres VM, Khan AA, Ahmed I, Shreiber DI, Meiners S

Received 6 April 2012

Accepted for publication 31 May 2012

Published 20 July 2012 Volume 2012:7 Pages 3891—3905

DOI https://doi.org/10.2147/IJN.S32681

Review by Single-blind

Peer reviewer comments 5

Volkan Mujdat Tiryaki,1 Virginia M Ayres,1 Adeel A Khan,2 Ijaz Ahmed,3 David I Shreiber,3 Sally Meiners4

1Electronic and Biological Nanostructures Laboratory, Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, USA; 2Department of Paper Engineering, Chemical Engineering, Imaging, Western Michigan University, Kalamazoo, MI, USA; 3Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA; 4Nanoculture, LLC, Piscataway, NJ, USA

Abstract: Cerebral cortical astrocyte responses to polyamide nanofibrillar scaffolds versus poly-L-lysine (PLL)-functionalized planar glass, unfunctionalized planar Aclar coverslips, and PLL-functionalized planar Aclar surfaces were investigated by atomic force microscopy and immunocytochemistry. The physical properties of the cell culture environments were evaluated using contact angle and surface roughness measurements and compared. Astrocyte morphological responses, including filopodia, lamellipodia, and stress fiber formation, and stellation were imaged using atomic force microscopy and phalloidin staining for F-actin. Activation of the corresponding Rho GTPase regulators was investigated using immunolabeling with Cdc42, Rac1, and RhoA. Astrocytes cultured on the nanofibrillar scaffolds showed a unique response that included stellation, cell–cell interactions by stellate processes, and evidence of depression of RhoA. The results support the hypothesis that the extracellular environment can trigger preferential activation of members of the Rho GTPase family, with demonstrable morphological consequences for cerebral cortical astrocytes.

Keywords: stellation, nanofiber, RhoA, atomic force microscopy

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Readers of this article also read:

Erratum

Parizek M, Douglas TEL, Novotna K, Kromka A, Brady MA, Renzing A, Voss E, Jarosova M, Palatinus L, Tesarek P, Ryparova P, Lisa V, dos Santos AM, Bacakova L

International Journal of Nanomedicine 2012, 7:5873-5874

Published Date: 26 November 2012

Degradable copolymer based on amphiphilic N-octyl-N-quatenary chitosan and low-molecular weight polyethylenimine for gene delivery

Liu CC, Zhu Q, Wu WH, Xu XL, Wang XY, Gao S, Liu KH

International Journal of Nanomedicine 2012, 7:5339-5350

Published Date: 8 October 2012

Anti-CEA loaded maghemite nanoparticles as a theragnostic device for colorectal cancer

Campos da Paz M, Almeida Santos MF, Santos CM, da Silva SW, de Souza LB, Lima EC, Silva RC, Lucci CM, Morais PC, Azevedo RB, Lacava ZG

International Journal of Nanomedicine 2012, 7:5271-5282

Published Date: 4 October 2012

Indomethacin-loaded lipid-core nanocapsules reduce the damage triggered by Aβ1-42 in Alzheimer’s disease models

Bernardi A, Frozza RL, Meneghetti A, Hoppe JB, Battastini AMO, Pohlmann AR, Guterres SS, Salbego CG

International Journal of Nanomedicine 2012, 7:4927-4942

Published Date: 13 September 2012

Lipid-based liquid crystalline nanoparticles as oral drug delivery vehicles for poorly water-soluble drugs: cellular interaction and in vivo absorption

Zeng N, Gao X, Hu Q, Song Q, Xia H, Liu Z, Gu G, Jiang M, Pang Z, Chen H, Chen J, Fang L

International Journal of Nanomedicine 2012, 7:3703-3718

Published Date: 13 July 2012

Amorphous silica nanoparticles trigger nitric oxide/peroxynitrite imbalance in human endothelial cells: inflammatory and cytotoxic effects

Corbalan JJ, Medina C, Jacoby A, Malinski T, Radomski MW

International Journal of Nanomedicine 2011, 6:2821-2835

Published Date: 9 November 2011

Biocompatibility of Fe3O4@Au composite magnetic nanoparticles in vitro and in vivo

Li Y, Liu J, Zhong Y, Zhang J, Wang Z, Wang L, An Y, Lin M, Gao Z, Zhang D

International Journal of Nanomedicine 2011, 6:2805-2819

Published Date: 9 November 2011