Back to Journals » International Journal of Nanomedicine » Volume 8 » Issue 1

Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging systems

Authors Kaur R, Badea I

Received 25 August 2012

Accepted for publication 27 September 2012

Published 9 January 2013 Volume 2013:8(1) Pages 203—220

DOI https://doi.org/10.2147/IJN.S37348

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 3

Randeep Kaur, Ildiko Badea

Drug Design and Discovery Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada

Abstract: Detonation nanodiamonds (NDs) are emerging as delivery vehicles for small chemical drugs and macromolecular biotechnology products due to their primary particle size of 4 to 5 nm, stable inert core, reactive surface, and ability to form hydrogels. Nanoprobe technology capitalizes on the intrinsic fluorescence, high refractive index, and unique Raman signal of the NDs, rendering them attractive for in vitro and in vivo imaging applications. This review provides a brief introduction of the various types of NDs and describes the development of procedures that have led to stable single-digit-sized ND dispersions, a crucial feature for drug delivery systems and nanoprobes. Various approaches used for functionalizing the surface of NDs are highlighted, along with a discussion of their biocompatibility status. The utilization of NDs to provide sustained release and improve the dispersion of hydrophobic molecules, of which chemotherapeutic drugs are the most investigated, is described. The prospects of improving the intracellular delivery of nucleic acids by using NDs as a platform are exemplified. The photoluminescent and optical scattering properties of NDs, together with their applications in cellular labeling, are also reviewed. Considering the progress that has been made in understanding the properties of NDs, they can be envisioned as highly efficient drug delivery and imaging biomaterials for use in animals and humans.

Keywords: dispersion, surface functionalization, toxicity, carriers, fluorescence, light scattering

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other articles by this author:

Evaluation of β-cyclodextrin-modified gemini surfactant-based delivery systems in melanoma models

Michel D, Mohammed-Saeid W, Getson H, Roy C, Poorghorban M, Chitanda JM, Verrall R, Badea I

International Journal of Nanomedicine 2016, 11:6703-6712

Published Date: 12 December 2016

Lysine-functionalized nanodiamonds as gene carriers: development of stable colloidal dispersion for in vitro cellular uptake studies and siRNA delivery application

Alwani S, Kaur R, Michel D, Chitanda JM, Verrall RE, Karunakaran C, Badea I

International Journal of Nanomedicine 2016, 11:687-702

Published Date: 19 February 2016

Characterization of the host–guest complex of a curcumin analog with β-cyclodextrin and β-cyclodextrin–gemini surfactant and evaluation of its anticancer activity

Poorghorban M, Das U, Alaidi O, Chitanda JM, Michel D, Dimmock J, Verrall R, Grochulski P, Badea I

International Journal of Nanomedicine 2015, 10:503-515

Published Date: 12 January 2015

Lysine-functionalized nanodiamonds: synthesis, physiochemical characterization, and nucleic acid binding studies

Kaur R, Chitanda JM, Michel D, Maley J, Borondics F, Yang P, Verrall RE, Badea I

International Journal of Nanomedicine 2012, 7:3851-3866

Published Date: 19 July 2012

Readers of this article also read:

Molecular targets in arthritis and recent trends in nanotherapy

Roy K, Kanwar RK, Kanwar JR

International Journal of Nanomedicine 2015, 10:5407-5420

Published Date: 26 August 2015

Is increasing the dose of Entecavir effective in partial virological responders?

Erturk A, Adnan Akdogan R, Parlak E, Cure E, Cumhur Cure M, Ozturk C

Drug Design, Development and Therapy 2014, 8:621-625

Published Date: 29 May 2014

Vincristine sulfate liposomal injection for acute lymphoblastic leukemia

Soosay Raj TA, Smith AM, Moore AS

International Journal of Nanomedicine 2013, 8:4361-4369

Published Date: 6 November 2013

Photodynamic therapy of a 2-methoxyestradiol tumor-targeting drug delivery system mediated by Asn-Gly-Arg in breast cancer

Shi J, Wang Z, Wang L, Wang H, Li L, Yu X, Zhang J, Ma R, Zhang Z

International Journal of Nanomedicine 2013, 8:1551-1562

Published Date: 19 April 2013

Controlled-release approaches towards the chemotherapy of tuberculosis

Saifullah B, Hussein MZ, Hussein Al Ali SH

International Journal of Nanomedicine 2012, 7:5451-5463

Published Date: 12 October 2012