Back to Journals » International Journal of Nanomedicine » Volume 6

Multi-access drug delivery network and stability

Authors Mitatha, Moongfangklang N, Ma, Suwanpayak N, Ali J, Yupapin P

Published 23 August 2011 Volume 2011:6 Pages 1757—1764


Review by Single anonymous peer review

Peer reviewer comments 5

S Mitatha1, N Moongfangklang1, MA Jalil2, N Suwanpayak3, J Ali4, PP Yupapin3
Hybrid Computing Research Laboratory, Faculty of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand; 2Ibnu Sina Institute of Fundamental Science Studies, Nanotechnology Research Alliance, Universiti Teknologi Malaysia, Johor Bahru, Malaysia; 2King Mongkut’s Institute of Technology Ladkrabang, Chumphon Campus, Chumphon, Thailand; 3Nanoscale Science and Engineering Research Alliance (N’SERA), Advanced Research Center for Photonics, Faculty of Science, King Mongkut’s Institute of Technology Ladkrabang, Bangkok, Thailand; 4Institute of Advanced Photonics Science, Nanotechnology Research Alliance, Universiti Teknologi Malaysia, Johor Bahru, Malaysia

Abstract: A novel design of a multi-drug delivery network and diagnosis using a molecular network is proposed. By using a pair of tweezers to generate the intense optical vortices within the PANDA ring resonator, the required molecules (drug volumes) can be trapped and moved dynamically within the molecular bus networks, in which the required drug delivery targets can be achieved within the network. The advantage of the proposed system is that the diagnostic method can be used within a tiny system (thin film device or circuit), which is available as an embedded device for diagnostic use in patients. In practice, the large molecular networks such as ring, star, and bus networks can be integrated to form a large drug delivery system. The channel spacing of the trapped volumes (molecules) within the bus molecular networks can be provided by using the appropriate free spectrum range, which is analyzed and discussed in the terms of crosstalk effects. In this work, crosstalk effects of about 0.1% are noted, which can be neglected and does not affect the network stability.

Keywords: drug delivery network, molecular networks, molecular diagnosis, neural system and network

Creative Commons License © 2011 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.