Back to Journals » International Journal of Nanomedicine » Volume 10 » Issue 1

Microwave-assisted fibrous decoration of mPE surface utilizing Aloe vera extract for tissue engineering applications

Authors Balaji A, Jaganathan SK, Supriyanto E, Muhamad II, Khudzari AZM

Received 10 March 2015

Accepted for publication 26 May 2015

Published 18 September 2015 Volume 2015:10(1) Pages 5909—5923

DOI https://doi.org/10.2147/IJN.S84307

Checked for plagiarism Yes

Review by Single-blind

Peer reviewer comments 2

Editor who approved publication: Dr Thomas J Webster

Arunpandian Balaji, Saravana Kumar Jaganathan, Eko Supriyanto, Ida Idayu Muhamad, Ahmad Zahran Md Khudzari

Institut Jantung Negara-Universiti Teknologi Malaysia, Cardiovascular Engineering Centre, Faculty of Biosciences and Medical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia

Abstract: Developing multifaceted, biocompatible, artificial implants for tissue engineering is a growing field of research. In recent times, several works have been reported about the utilization of biomolecules in combination with synthetic materials to achieve this process. Accordingly, in this study, the ability of an extract obtained from Aloe vera, a commonly used medicinal plant in influencing the biocompatibility of artificial material, is scrutinized using metallocene polyethylene (mPE). The process of coating dense fibrous Aloe vera extract on the surface of mPE was carried out using microwaves. Then, several physicochemical and blood compatibility characterization experiments were performed to disclose the effects of corresponding surface modification. The Fourier transform infrared spectrum showed characteristic vibrations of several active constituents available in Aloe vera and exhibited peak shifts at far infrared regions due to aloe-based mineral deposition. Meanwhile, the contact angle analysis demonstrated a drastic increase in wettability of coated samples, which confirmed the presence of active components on glazed mPE surface. Moreover, the bio-mimic structure of Aloe vera fibers and the influence of microwaves in enhancing the coating characteristics were also meticulously displayed through scanning electron microscopy micrographs and Hirox 3D images. The existence of nanoscale roughness was interpreted through high-resolution profiles obtained from atomic force microscopy. And the extent of variations in irregularities was delineated by measuring average roughness. Aloe vera-induced enrichment in the hemocompatible properties of mPE was established by carrying out in vitro tests such as activated partial thromboplastin time, prothrombin time, platelet adhesion, and hemolysis assay. In conclusion, the Aloe vera-glazed mPE substrate was inferred to attain desirable properties required for multifaceted biomedical implants.

Keywords: Metallocene polyethylene, fibrous coating, physicochemical properties, blood compatibility

Creative Commons License This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.

Download Article [PDF]  View Full Text [HTML][Machine readable]

 

Other articles by this author:

Carbon nanotubes and graphene as emerging candidates in neuroregeneration and neurodrug delivery

John AA, Subramanian AP, Vellayappan MV, Balaji A, Mohandas H, Jaganathan SK

International Journal of Nanomedicine 2015, 10:4267-4277

Published Date: 2 July 2015

Multifaceted prospects of nanocomposites for cardiovascular grafts and stents

Vellayappan MV, Balaji A, Subramanian AP, John AA, Jaganathan SK, Murugesan S, Supriyanto E, Yusof M

International Journal of Nanomedicine 2015, 10:2785-2803

Published Date: 7 April 2015

Readers of this article also read:

A new recombinant factor VIII: from genetics to clinical use

Kannicht C, Kohla G, Tiemeyer M, Walter O, Sandberg H

Drug Design, Development and Therapy 2015, 9:3817-3819

Published Date: 23 July 2015

Acquired hemophilia A: emerging treatment options

Janbain M, Leissinger CA, Kruse-Jarres R

Journal of Blood Medicine 2015, 6:143-150

Published Date: 8 May 2015

Methacrylic-based nanogels for the pH-sensitive delivery of 5-Fluorouracil in the colon

Ashwanikumar N, Kumar NA, Nair SA, Kumar GS

International Journal of Nanomedicine 2012, 7:5769-5779

Published Date: 15 November 2012

A novel preparation method for silicone oil nanoemulsions and its application for coating hair with silicone

Hu Z, Liao M, Chen Y, Cai Y, Meng L, Liu Y, Lv N, Liu Z, Yuan W

International Journal of Nanomedicine 2012, 7:5719-5724

Published Date: 12 November 2012

Cross-linked acrylic hydrogel for the controlled delivery of hydrophobic drugs in cancer therapy

Deepa G, Thulasidasan AK, Anto RJ, Pillai JJ, Kumar GS

International Journal of Nanomedicine 2012, 7:4077-4088

Published Date: 27 July 2012

The use of PEGylated liposomes in the development of drug delivery applications for the treatment of hemophilia

Rivka Yatuv, Micah Robinson, Inbal Dayan-Tarshish, et al

International Journal of Nanomedicine 2010, 5:581-591

Published Date: 6 August 2010

Crystallization after intravitreal ganciclovir injection

Pitipol Choopong, Nattaporn Tesavibul, Nattawut Rodanant

Clinical Ophthalmology 2010, 4:709-711

Published Date: 14 July 2010